
R Programming Fundamentals: A Lab-Based
Approach

Ezekiel Ogundepo

Table of contents

Preface 3

1 Getting Started with R 5
1.1 Introduction . 6

1.1.1 Why learning R programming? . 6
1.1.2 Companies Using R for Analytics . 6
1.1.3 Learning Curve . 6
1.1.4 Installing R and RStudio . 8

1.2 Experiment 1.1: RStudio Interface and Basic Calculations 9
1.2.1 The Four Panes of RStudio . 9
1.2.2 Basic Calculations in R Programming 11
1.2.3 Comments in R . 13
1.2.4 Comparison Operators . 14
1.2.5 Exercise 1.1.1 . 15

1.3 Experiment 1.2: Atomic Data Type and Variable Assignment in R 15
1.3.1 Variable Assignment . 16
1.3.2 Rules for Naming Variables . 17
1.3.3 Exercise 1.2.1: Acceptable vs. Unacceptable Variable Names 18
1.3.4 Data Type Conversions . 19
1.3.5 Exercise 1.2.2 . 20

1.4 Experiment 1.3: Conditional Statements in R 21
1.4.1 The if Statement . 22
1.4.2 The else Statement . 22
1.4.3 The else if Statement . 22
1.4.4 The switch function . 24
1.4.5 Exercise 1.3.1 . 27
1.4.6 Exercise 1.3.2: Menu Selection Using switch() 28

1.5 Additional R Learning Resources . 29
1.6 Summary . 30

2 Understanding Data Structures 31
2.1 Introduction . 31
2.2 Experiment 2.1: Vectors . 32

2.2.1 Creating a Vector . 32
2.2.2 Factor vectors . 34

2

2.2.3 Length of a vector . 35
2.2.4 Arithmetic Operations with Vectors . 35
2.2.5 Vector selection . 35
2.2.6 Exercise 2.1.1: Vector Selection . 36

2.3 Experiment 2.2: Matrices . 36
2.3.1 Creating Matrices . 37
2.3.2 Matrices slicing . 38
2.3.3 Arithmetic Operation in Matrices . 38
2.3.4 Exercise 2.2.1: Matrix Transpose . 39
2.3.5 Exercise 2.2.2: Matrix Inverse Multiplication 40

2.4 Experiment 2.3: Data frame . 40
2.4.1 Creating a Data Frame . 41
2.4.2 Exploring Data Frames . 42
2.4.3 Explore the data . 43
2.4.4 Built-in Datasets . 45
2.4.5 Subsetting Data Frames . 46
2.4.6 Exercise 2.3.1: Subsetting a Dataframe 49

2.5 Experiment 2.4: Lists . 49
2.5.1 Creating a List . 49
2.5.2 Accessing List Elements . 50

2.6 Summary . 51

3 Writing Custom Functions 52
3.1 Introduction . 53

3.1.1 Types of Functions . 53
3.1.2 Why Write Your Own Function? . 53
3.1.3 When Should You Write a Function? . 54

3.2 Experiment 3.1: Creating a Function . 54
3.2.1 Calling a User-defined Function in R . 55
3.2.2 Creating a Function to Square a Number 55
3.2.3 Checking for Missing Values . 56
3.2.4 Data Frame Manipulation Using switch() 57
3.2.5 Exercise 3.1.1: Temperature Conversion 61
3.2.6 Exercise 3.1.2: Pythagoras Theorem . 62
3.2.7 Exercise 3.1.3: Staff Data Manipulation Using switch() 63

3.3 Experiment 3.2: Understanding Variable Scope Within Functions 64
3.3.1 Local vs. Global Variables . 65
3.3.2 How Variable Scope Works in R . 65
3.3.3 Variable Shadowing . 66

3.4 Summary . 67

4 Managing Packages & Workflows 68
4.1 Introduction . 69

3

4.2 Compiling R Packages from Source . 69
4.3 Experiment 4.1: Installing and Loading Packages 70

4.3.1 Installing Packages from CRAN . 70
4.3.2 Installing Packages from External Repositories 71
4.3.3 Loading Installed Packages . 71
4.3.4 Using Functions from a Package . 73

4.4 Experiment 4.2: Data Analysis Reproducibility with R and RStudio Projects . 81
4.4.1 Where Does Your Analysis Live? . 81
4.4.2 Paths and Directories . 82
4.4.3 RStudio Projects . 82

4.5 Experiment 4.3: Importing and exporting data in R 84
4.5.1 Packages for Reading and Writing Data in R 86
4.5.2 Working with Projects in RStudio . 87

4.6 Experiment 4.4: Dealing with Missing Data in R 90
4.6.1 Recognizing Missing Values . 91
4.6.2 Summarizing Missing Data . 93
4.6.3 Handling Missing Values . 94
4.6.4 Exercise 4.1: Medical Insurance Data 96

4.7 Summary . 97

5 Data Analysis and Visualization 99
5.1 Introduction . 100
5.2 Experiment 5.1: The Pipe Operator <%> . 100

How Does the Pipe Operator Work? . 101
5.3 Experiment 5.2: Data Manipulation with dplyr 103

5.3.1 Why Use dplyr? . 103
5.3.2 Getting Started . 104
5.3.3 Core dplyr Verbs . 104
5.3.4 Using Pipes with dplyr functions . 105
5.3.5 Example Datasets . 105
Example: using select() . 106
Example: Using mutate() . 107
Example: Using filter() . 108
Example: Using arrange() . 108
Example: Using summarise() . 109
Example: Using group_by() and summarise() 110
Example: Using rename() . 110
5.3.6 Exercise 5.1: Analyzing the Penguins Dataset 111

5.4 Experiment 5.3: Data Visualization . 112
5.4.1 Importance of Data Visualization . 113
5.4.2 Choosing the Right Visualization . 114
5.4.3 Types of Data Visualization Analysis . 115
5.4.4 Common Data Visualization Techniques 116

4

5.4.5 Data Visualization with ggplot2 . 125
5.4.6 Building Plots with ggplot2 . 126
5.4.7 Saving your plots . 136
Customizing the Output . 137
5.4.8 Exercise 5.2: Data Analysis and Visualization with Medical Insurance

Data . 138
5.5 Summary . 139

6 Mastering R through Use Case Projects 140
6.1 Why Use Case Projects? . 140
6.2 Sample Use Case Project: Televison Client Analysis 140

6.2.1 Background . 140
6.2.2 Data Structure . 141
6.2.3 Tasks . 141

6.3 Exercise 6.1: Analyzing a Rape Survey for the Federal Government of Nigeria . 142
6.3.1 Project Overview . 142
6.3.2 Dataset . 142
6.3.3 Your Task . 142
6.3.4 Presentation . 142

Appendices 143

A Downloading and Preparing the Data 143
A.1 Downloading the Data . 143
A.2 Setting Up Your Working Directory . 144

A.2.1 Creating a New RStudio Project for Each Exercise 144
A.2.2 Benefits of Using Separate Projects for Each Exercise 145

A.3 Data Usage and Ethics . 145
A.4 Getting Help . 146

5

Preface

Welcome to “R Programming Fundamentals: A Lab-Based Approach” by Ezekiel
Ogundepo. This book is born out of a passion for teaching and a belief in learning by doing.
Over the years, I’ve seen countless students transform their understanding and skills through
hands-on experience, and it is this transformative journey that I hope to guide you through
in these pages.

R has emerged as a powerful tool for data analysis, statistics, and visualisation. Whether
you’re a student stepping into the world of data science for the first time, a professional seeking
to enhance your analytical capabilities, or simply a curious mind eager to explore new horizons,
this book is designed to meet you where you are.

The approach we’ve taken is straightforward yet effective: each chapter presents lab-based
experiments and exercises that encourage you to roll up your sleeves and dive into coding.
Rather than overwhelming you with abstract theory, we focus on practical application, allowing
you to see immediate results from the concepts you learn. This method not only reinforces
your understanding but also builds confidence as you witness your own progress.

We begin with the basics—navigating the RStudio interface, performing simple calculations,
and understanding fundamental data types. From there, we delve into more complex struc-
tures like vectors, matrices, and data frames, equipping you with the tools to manipulate and
analyse data effectively. As you progress, you’ll learn to write custom functions, manage
packages, handle real-world data, and ensure the reproducibility of your analyses.

One of the unique aspects of this book is its emphasis on real-world applications. The labs
are crafted to mirror challenges you might face outside the classroom or office, bridging the
gap between learning and doing. By the end of this book, you’ll not only understand the
mechanics of R programming but also how to apply it to solve meaningful problems.

I have written this book in a conversational tone, much like how I would teach in a classroom
or guide a colleague. My aim is to make the material accessible and engaging, stripping away
unnecessary jargon without sacrificing depth or clarity. I’ve also included plenty of examples,
exercises, and tips to support your learning journey.

Remember, programming is as much an art as it is a science. It requires patience, practice,
and a willingness to experiment. Don’t be discouraged by mistakes—they are stepping stones
to mastery. I encourage you to take your time with each lab, explore variations of the examples
provided, and most importantly, enjoy the process of learning.

6

https://gbganalyst.github.io/
https://gbganalyst.github.io/

Thank you for choosing this book as your guide into the world of R programming. I am excited
to accompany you on this journey and look forward to the insights and discoveries that await
you.

Figure 1: Author’s Enthusiastic Invitation to Explore R Programming

Happy coding!

7

1 Getting Started with R

Welcome to Lab 1! In this first chapter, we’ll embark on an exciting journey into the world
of R programming and the powerful RStudio Integrated Development Environment (IDE).
Whether you’re new to programming or already familiar with other languages, this lab is
designed to lay a solid foundation for your future explorations in data analysis and statistical
computing.

By the end of this lab, you’ll have a strong grasp of the basics of R programming, setting you
up to dive deeper into more complex topics later on.

Here’s what we’ll cover:

• Exploring the RStudio Interface
You’ll get acquainted with the four main panes of RStudio and see how each one con-
tributes to a smooth and efficient coding experience.

• Performing Basic Calculations
You’ll learn how to use R as a calculator, performing arithmetic operations while under-
standing the order of operations.

• Understanding Atomic Data Types
We’ll delve into the fundamental data types in R, such as numeric, character, and logical
types, which are essential building blocks for working with data.

• Assigning Variables:
You’ll practice creating variables, assigning values to them, and following proper naming
conventions, an essential skill for organizing your code.

• Using Conditional Statements
You’ll explore how to control the flow of your programs using if, else if, and else state-
ments, along with logical operators, allowing your code to make decisions based on
conditions.

By completing this lab, you’ll not only be comfortable with the RStudio environment but also
able to perform basic calculations, manipulate data types, assign variables, and write simple
scripts that make decisions based on conditions. This is your first step toward mastering R
and unlocking its potential for data analysis and statistical computing.

8

1.1 Introduction

R is a powerful programming language and software environment used extensively for statistical
computations, data cleaning, data analysis, and graphical representation of data. It’s a vital
tool for statisticians, data scientists, and anyone interested in data mining. Since its inception,
R has become a cornerstone in the field of data analysis, celebrated for its versatility and
community support.

1.1.1 Why learning R programming?

Learning R opens doors to a vast ecosystem of packages and resources that make data analysis
and visualization more accessible and efficient. Its active community continually contributes
to its development, ensuring that it stays up-to-date with the latest methodologies in data
science.

Figure 1.1: Compelling Reasons to Learn R

1.1.2 Companies Using R for Analytics

Many leading companies leverage R for their analytics needs, demonstrating its practical ap-
plications in the industry. You can find a list of such companies here.

1.1.3 Learning Curve

While R might seem challenging at first, many users find that it simplifies complex tasks once
you get the hang of it. Think of it as making difficult things easy and easy things even easier!

9

https://www.quora.com/Which-companies-use-R

Figure 1.2: Major Companies Using R Programming

Figure 1.3: The Learning Curve of R Programming

10

1.1.4 Installing R and RStudio

Before we dive in, you’ll need to have both R and RStudio installed on your computer. R is
the core programming language, while RStudio provides a user-friendly interface that enhances
your coding experience.

Figure 1.4: Overview of the RStudio Interface

Installing R

The installation process for R varies slightly depending on your operating system:

• For Windows Users:

Visit the CRAN (Comprehensive R Archive Network) website at this link. Download
the latest version of R for Windows, then follow the installation prompts to complete
the setup.

• For Mac Users:

Head over to the CRAN website for Mac at this link. Download the appropriate version
for your macOS, and follow the on-screen instructions to install it.

Installing RStudio

Once R is installed, you’ll want to install RStudio, which provides an easier interface to interact
with R.

11

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/macosx

• Visit the RStudio download page. Select the free version of RStudio Desktop, and
download the appropriate installer for your operating system (Windows, macOS, or
Linux). Then, run the installer and follow the instructions.

With both R and RStudio installed, you’re ready to start your journey into data analysis,
statistical computing, and programming with R!

1.2 Experiment 1.1: RStudio Interface and Basic Calculations

In this experiment, you will begin working with R. You will learn how to navigate the four
panes in RStudio, use R as a calculator, assign values to variables, and understand basic data
types.

1.2.1 The Four Panes of RStudio

RStudio is divided into four main panes, each serving a specific purpose to enhance your coding
workflow1.

Figure 1.5: Annotated Overview of Key RStudio Panels

Source Pane

• This is where you write your R code. Think of it as your notepad or a place to draft
your work.

1For a detailed overview of all RStudio’s features, see the RStudio User Guide at https://docs.posit.co/ide/user.

12

https://www.rstudio.com/products/rstudio/download/#download

• The code you write here won’t run until you specifically tell it to. You do this by clicking
the “Run” button or using the keyboard shortcut (Ctrl + Enter for Windows or Cmd +
Enter for Mac).

• The Source Pane is great for writing scripts that you can save and use later.

Console Pane

• This is the heart of R’s interaction with you. It’s where R evaluates your commands.

• When you “Run” your code from the Source, it shows up here, and R processes it
immediately.

• You can also directly type commands here for quick calculations or testing. However,
anything you type in the console won’t be saved if you close RStudio.

Environment/History Pane

• Environment Tab: This shows you all the variables, data frames, and objects you’ve
created in your current R session. It’s like a snapshot of everything you’re working with.

• History Tab: This keeps a record of every command you’ve entered, allowing you to
track what you’ve done so far.

Files/Plots/Packages/Help Pane

• Files Tab: View and manage the files on your computer, similar to a file explorer.

• Plots Tab: Displays any graphs or charts you create with your R code.

• Packages Tab: Shows the packages (additional tools and functions) available in R and
allows you to install, load, or update them as needed.

• Help Tab: This is your go-to place for understanding how functions work. If you’re
unsure about something, R’s built-in documentation will be here to guide you.

13

Figure 1.6: R Programming as a Powerful Calculator

1.2.2 Basic Calculations in R Programming

R can perform all standard arithmetic operations, making it a handy calculator.

The basic operators include:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Exponentiation (^)

• Modulo (%%)

• Parenthesis ()

Arithmetic Operations

6 + 12 - 8

#> [1] 10

2 * 3

#> [1] 6

100 / 50

14

#> [1] 2

3 * 5 / 3

#> [1] 5

3^2

#> [1] 9

Modulus

The modulo (or “modulus” or “mod”) is the remainder after division. For example, 9 mod 2
= 1. Because 9/2 = 4 with a remainder of 1. In mathematics, we write that as 9 mod 2 = 1
and in R we write it as 9 %% 2 = 1.

9 %% 2 # Returns 1

#> [1] 1

Parenthesis or brackets

Parentheses are used to denote grouping of operation in mathematics. It denotes modifications
to normal order of operations. Do you remember BODMAS in mathematics? We shall
use BEDMAS: Brackets, Exponentiation, Division, Multiplication, Addition, Subtraction in
programming.

In an expression like 3 × (2 + 3), the part of the expression within the parentheses, (2 + 3) = 5,
is evaluated first, and then this result is used in the rest of the expression i.e. 3 × 5 = 15.

3 * (2 + 3) # Returns 15

#> [1] 15

(3 + 2) * (6 - 4) # Returns 10

#> [1] 10

15

Operations Involving Square Roots

To calculate square roots, use the sqrt() function.
√

125

sqrt(125)

#> [1] 11.18034

19√
19

19 / sqrt(19)

#> [1] 4.358899

1.2.3 Comments in R

Comments are lines in your code that R ignores during execution. They are marked by the #
symbol and are essential for:

1. Understanding your code later.

2. Helping others understand your code.

3. Documentation purposes.

Example:

Multiplying 2 by 8

2 * 8

#> [1] 16

It’s good practice to add a space after the # for readability.

3 + 6 # Adding 3 and 6

#> [1] 9

16

1.2.4 Comparison Operators

Comparison operators compare values and return TRUE or FALSE, known as logical. The
following are the most common comparison operators in R:

• Equal to (==)

• Not equal to (!=)

• Greater than (>)

• Less than (<)

• Greater than or equal to (>=)

• Less than or equal to (<=)

5 == 3 # Returns FALSE

#> [1] FALSE

25 != 10 # Returns TRUE

#> [1] TRUE

100 > 30 # Returns TRUE

#> [1] TRUE

60 >= 45 # Returns TRUE

#> [1] TRUE

100 <= 1000 # Returns TRUE

#> [1] TRUE

17

1.2.5 Exercise 1.1.1

• Explore RStudio: Open RStudio and familiarize yourself with the four panes.

• Perform Calculations: In the Source Pane, compute the following, adding comments
where appropriate:

– 2 + 6 − 12
– 4 × 3 − 8
– 81 ÷ 6
– 16 mod 3
– 23

– (3 + 2) × (6 − 4) + 2

1.3 Experiment 1.2: Atomic Data Type and Variable Assignment in
R

R works with several atomic data types:

• Numeric: Integers or doubles (e.g., 4, -2, 4.7, -0.26)

• Character: Text strings enclosed in quotes (e.g., "Nigeria", "Hello world")

• Logical: Boolean values (TRUE, FALSE)

Figure 1.7: Data Types in R Programming

You can determine the data type of an object using the class() function.

class(2) # Returns "numeric"

18

#> [1] "numeric"

class("Anthony Joshua") # Returns "character"

#> [1] "character"

class(TRUE) # Returns "logical"

#> [1] "logical"

1.3.1 Variable Assignment

When working in R, you’ll often find yourself storing values, results, or objects for later use.
This is where variables come in. Variables allow you to hold onto data so that you can reference
it easily whenever you need it. Assigning a value to a variable is straightforward in R, and you
can do this using the assignment operator, which is <- or =. While both work, you’ll notice
that most R users prefer <- for assignments. This preference is largely based on convention
and readability, as it helps keep your code clean and consistent2.

Let’s walk through a few examples to see variable assignment in action. Here, we’ll assign
different types of data to variables.

number <- 10 # 'number' now holds the value 10

class(number) # Returns "numeric"

#> [1] "numeric"

state <- "Lagos"

class(state) # Returns "character"

#> [1] "character"

After running these lines, each variable (number, state) stores a value that you can reuse or
modify later in your code. For instance, if you want to check the value of number, just type:

number
2You might wonder why R uses <- instead of the = symbol that you might see in other programming languages.

While you can use = for assignment in R, it’s generally preferred to use <- for clarity. This is partly because
= is also used in function arguments, so sticking to <- makes your code easier to read and helps avoid
confusion.

19

#> [1] 10

… and R will display the stored value.

Tip

If you’re using a Windows, a quick way to type the assignment operator <- is by pressing
ALT + _, while on a Mac, you can use Option + _. This shortcut can save you time as
you write and assign variables in R.

Once you’ve assigned a value to a variable, you can use that variable in expressions. For
instance:

x <- 15

y <- 12

x + 1

#> [1] 16

x + y

#> [1] 27

It’s also good to know that you can overwrite variables if needed. Say you assigned x <- 15,
but later, you decide x should be 20. You can just assign it again:

x <- 20

Now, every time you call x, R will know that its value is 20, not 15 anymore.

1.3.2 Rules for Naming Variables

• Must start with a letter.

• Can contain letters, numbers, underscores _, or dots . after the first letter.

• No spaces or special characters.

• R is case-sensitive (Age and age are different variables).

20

Quick Tips

• Name Your Variables Clearly: Choose names that describe the data they hold,
like total_sales or average_height, rather than generic names like x or y. Using
clear, descriptive variable names is a best practice because it makes your code easier
to understand and maintain. This way, anyone reading your code can quickly grasp
the purpose of each variable without needing additional explanations.

• Avoid Overwriting R’s Built-in Functions: Names like mean, sum, and data
are already used by R, so avoid using these as variable names to prevent errors.

In short, variable assignment is like giving a shortcut name to a value or a piece of data.
Once assigned, you can call on that name whenever you need it, making your code easier
to follow and maintain. And remember, R is pretty flexible, so don’t worry too much if
you make a mistake – you can always reassign or update your variables as you go!

1.3.3 Exercise 1.2.1: Acceptable vs. Unacceptable Variable Names

In this exercise, you will explore the differences between acceptable and unacceptable variable
names in R. Understanding why some naming conventions work and others don’t is essential
for writing clean, error-free code.

Instructions:

1. Review the table below and identify why each name is either acceptable or unaccept-
able according to R’s variable naming rules.

2. Answer the following questions:

• Why are some variable names acceptable while others are not?
• What makes the acceptable variable names follow R’s rules and best practices?

3. Reflect on how these rules can help make your code more readable and easier to debug.

Table of Variable Names

Acceptable Variable Names Unacceptable Variable Names
health.status health(status)
covid_19_cases covid-19-cases
budget2024 2024budget
sales_price_2024 sales price 2024

Discussion Questions

21

Comparison of Variable Naming Conventions
Acceptable vs. Unacceptable Variable Names

Acceptable Variable Names Unacceptable Variable Names
health.status health(status)
covid_19_cases covid-19-cases
budget2024 2024budget
sales_price_2024 sales price 2024

Data Type Conversion in R
Common Functions to Convert Between Data Types

Data Type Converting To How to Do It
Numeric as.numeric(variable_name)
Character as.character(variable_name)
Logical as.logical(variable_name)
Complex as.complex(variable_name)

1. Periods and Underscores: Why are periods (.) and underscores (_) commonly used
in acceptable variable names instead of symbols like hyphens or spaces?

2. Special Characters: What happens if you use special characters like parentheses (())
in a variable name? Why does R disallow these?

3. Starting with Letters: Why is it important to start a variable name with a letter
rather than a number?

Reflect on these questions and write down your answers in a few sentences for each. Use these
answers as a guide to create variable names that follow R’s rules and make your code easy to
understand.

1.3.4 Data Type Conversions

Sometimes you need to convert data from one type to another, known as typecasting. Use
the as. functions. The following table shows examples of those functions:

Data Type Converting To How to Do It
Numeric as.numeric(variable_name)
Character as.character(variable_name)
Logical as.logical(variable_name)
Complex as.complex(variable_name)

Suppose you have:

weight <- "64.45"

class(weight) # Returns "character"

#> [1] "character"

Convert weight to numeric:

22

weight_num <- as.numeric(weight)

class(weight_num) # Returns "numeric"

#> [1] "numeric"

Handling NA Results

If R can’t convert a value, it returns NA (Not Available). This often happens when:

• Converting a character string that contains letters or symbols to numeric.

• Converting non-boolean strings to logical.

height <- "161.5 cm"

as.numeric(`height`) # Returns NA with a warning

#> Warning: NAs introduced by coercion

#> [1] NA

smiling_face <- "No"

as.logical(`smiling_face`) # Returns NA

#> [1] NA

1.3.5 Exercise 1.2.2

Determine the classes of the following variables and convert them if necessary:

age <- 15

class(age) # What is the class?

#> [1] "numeric"

diabetic_status <- "No"

class(diabetic_status) # What is the class?

23

#> [1] "character"

five_less_than_2 <- FALSE

class(five_less_than_2) # What is the class?

#> [1] "logical"

weight <- "60.4 kg"

class(weight) # What is the class?

#> [1] "character"

Can you convert weight to numeric?

smile_face <- "FALSE"

class(smile_face) # What is the class?

#> [1] "character"

What happens if you convert smile_face to logical?

1.4 Experiment 1.3: Conditional Statements in R

Conditional statements allow your program to make decisions based on certain conditions.
The primary constructs are if, else if, and else.

Figure 1.8: If-Else Statement in R Programming

24

1.4.1 The if Statement

This is the most basic conditional construct. It executes code only if a specified condition is
TRUE.

x <- 5
if (x > 3) {
print("x is greater than 3")

}

#> [1] "x is greater than 3"

1.4.2 The else Statement

Provides an alternative set of instructions if the if condition is FALSE.

x <- 2
if (x > 3) {
print("x is greater than 3")

} else {
print("x is not greater than 3")

}

#> [1] "x is not greater than 3"

1.4.3 The else if Statement

For situations with multiple conditions to check sequentially, else if can be used. It provides
an additional condition check after the initial if statement.

x <- 3
if (x > 5) {
print("x is greater than 5")

} else if (x == 5) {
print("x is equal to 5")

} else {
print("x is less than 5")

}

#> [1] "x is less than 5"

25

Using Logical Operators

You can combine conditions using logical operators:

• AND (&)
• OR (|)
• NOT (!)

Example using AND (&):

x <- 8
y <- 12

if (x < 10 & y > 10) {
print("Both conditions are true")

} else {
print("At least one condition is false")

}

In this example, the if statement checks if both x < 10 and y > 10 are TRUE. Since both
conditions are TRUE, the output will be:

"Both conditions are true"

Example using OR (|):

a <- 3
b <- 20

if (a < 5 | b > 25) {
print("At least one condition is true")

} else {
print("Neither condition is true")

}

In this example, the if statement checks if either a is less than 5 or b is greater than 25. Since
a < 5 is TRUE, the output will be:

"At least one condition is true"

Example using NOT (!):

26

c <- FALSE

if (!c) {
print("The condition is false")

} else {
print("The condition is true")

}

Here, the if statement uses the NOT operator to check if c is not TRUE. Since c is FALSE, !c
becomes TRUE, and the output will be:

"The condition is false"

1.4.4 The switch function

The switch() function is a control flow statement that allows you to execute different pieces
of code based on the value of an expression. It’s particularly useful when you have multiple
conditions to check and want a cleaner alternative to lengthy if...else statements.

There are two primary ways to use switch() in R:

1. Numeric Switching: Where the expression evaluates to a numeric index.

2. Character Switching: Where the expression evaluates to a character string matching
one of the named alternatives.

The general structure of switch() function is as follows:

switch(EXPR,
...

)

where:

• EXPR: An expression that evaluates to a numeric value or a character string.

• ...: A sequence of alternatives (unnamed or named arguments).

The switch() function uses the same syntax for both numeric and character expressions. The
behavior of the function depends on the type of the EXPR argument you provide.

27

When to Use switch()

• When you have a variable that can take on multiple known values and you want to
execute different code based on each value.

• To improve code readability over multiple if...else statements.

• When performance is a consideration, as switch() can be more efficient than multiple
if...else checks.

1.4.4.1 Example: Day of the Week Activities Using Character Switching

Suppose you want to plan activities based on the day of the week.

day <- "Saturday"

activity <- switch(day,
Monday = "Go to the gym",
Tuesday = "Attend a cooking class",
Wednesday = "Work from home",
Thursday = "Meet friends for dinner",
Friday = "Watch a movie",
Saturday = "Go hiking",
Sunday = "Rest and recharge",
"Invalid day"

)

print(paste("Today's activity:", activity))

#> [1] "Today's activity: Go hiking"

Explanation

• Variable day: Contains the day of the week as a string.

• Using switch():

– Matches day against the provided day names.

– If a match is found, returns the corresponding activity.

– If no match is found, returns "Invalid day".

28

1.4.4.2 Example: Mapping Codes to Descriptions Using Character Switching

Suppose you have status codes that need to be mapped to descriptive messages.

status_code <- 404

message <- switch(as.character(status_code),
"200" = "OK: The request has succeeded.",
"301" = "Moved Permanently: The resource has moved.",
"400" = "Bad Request: The request could not be understood.",
"401" = "Unauthorized: Authentication is required.",
"404" = "Not Found: The resource could not be found.",
"500" = "Internal Server Error: The server encountered an error.",
"Unknown Status Code"

)

print(message)

#> [1] "Not Found: The resource could not be found."

Explanation:

• Variable status_code: Contains an HTTP status code.

• Converting to Character: as.character(status_code) because switch() with
character matching requires a string.

• Using switch():

– Matches the status code against the provided cases.

– Returns the corresponding message or "Unknown Status Code" if no match is
found.

1.4.4.3 Example: Simple Calculator Using Numeric Switching

Let’s create a simple calculator that performs operations based on a numeric choice.

User inputs
num1 <- 10
num2 <- 5
choice <- 3 # Options: 1 for addition, 2 for subtraction, 3 for multiplication, 4 for division

Use switch() to perform the selected operation

29

result <- switch(choice,
num1 + num2, # If choice == 1
num1 - num2, # If choice == 2
num1 * num2, # If choice == 3
if (num2 != 0) num1 / num2 else "Division by zero error", # If choice == 4
"Invalid operation"

) # Default if choice > number of cases

Display the result
print(paste("The result is:", result))

#> [1] "The result is: 50"

Explanation

• Variables:

– num1, num2: Numbers to operate on.

– choice: Numeric choice of operation.

• Using switch():

– Since choice is numeric, switch() selects the expression based on position.

∗ 1: num1 + num2

∗ 2: num1 - num2

∗ 3: num1 * num2

∗ 4: Division with a check for division by zero.

– If choice exceeds the number of provided alternatives (4), the default "Invalid
operation" is returned.

1.4.5 Exercise 1.3.1

Task 1

What is the output of the following code?

30

a <- 10
if (a %% 2 == 0) {
print("Even")

} else {
print("Odd")

}

#> [1] "Even"

Task 2

Given m <- 5 and n <- 7, write code that prints:

• “m is greater than n” if m > n
• “m is less than n” if m < n
• “m and n are equal” if m == n

1.4.6 Exercise 1.3.2: Menu Selection Using switch()

Simulate a simple text-based menu where a user selects an option. Use the switch() function
to determine the action based on the user’s selection.

Your Task:

1. Simulate User Input:

• Assign a value to a variable option to represent the user’s selection.
• Possible options: "balance", "deposit", "withdraw", "exit".

2. Use the switch() Function:

• Match the value of option to the appropriate case using switch().
• For each case, assign a message that describes the action.

Possible Options and Messages:

• “balance”: Display “Your current balance is $1,000.”

• “deposit”: Display “Enter the amount you wish to deposit.”

• “withdraw”: Display “Enter the amount you wish to withdraw.”

• “exit”: Display “Thank you for using our banking services.”

• Default: Display “Invalid selection. Please choose a valid option.”

31

3. Include a Default Case:

• If the user input does not match any of the specified options, provide a default
message indicating an invalid selection.

4. Display the Message:

• Use print() to display the message corresponding to the user’s selection.

Here’s a starting point for your code:

Simulate user input
option <- "---" # Options could be "balance", "deposit", "withdraw", "exit"

Use switch() to determine the action
message <- switch(...,
balance = "You have $1,000 in your account.",
deposit = ...,
withdraw = "How much would you like to withdraw?",
"Invalid selection. Please choose a valid option."

)

Display the message
print(...)

Replace the ... with the correct values and complete the exercise!

1.5 Additional R Learning Resources

To further enhance your R programming skills, here are some excellent resources:

• YaRrr! The Pirate’s Guide to R by Nathaniel D. Phillips

• R for Data Science by Hadley Wickham, Mine Çetinkaya-Rundel, and Garrett Grole-
mund.

• R for Data Science: Exercise Solutions by Jeffrey B. Arnold

• Big Book of R by Oscar Baruffa

• Posts you might have missed!

32

https://bookdown.org/ndphillips/YaRrr/
https://r4ds.hadley.nz/
https://jrnold.github.io/r4ds-exercise-solutions/
https://www.bigbookofr.com/
https://postsyoumighthavemissed.com/search/

1.6 Summary

Congratulations on completing Lab 1! You’ve taken your first steps into R programming and
have covered a lot of ground:

• Navigating the RStudio Interface
You learned how to use RStudio’s four main panes to write, execute, and manage your
R code effectively.

• Performing Basic Calculations
You practiced using R for arithmetic operations, understood operator precedence, and
learned how to use mathematical functions.

• Understanding Atomic Data Types
You explored numeric, character, and logical data types, and learned how to identify and
convert between them.

• Assigning Variables
You mastered variable assignment, followed naming conventions, and performed opera-
tions using variables.

• Constructing Conditional Statements
You learned how to control the flow of your programs using if, else if, and else
statements, and how to use logical operators.

As you move forward in this book, these foundational skills will be invaluable. In the next lab,
we’ll delve into R’s basic data structures, such as vectors, matrices, and data frames, which
are essential for data manipulation and analysis.

Keep practicing, and don’t hesitate to revisit this lab if you need a refresher. Happy coding!

33

2 Understanding Data Structures

In this Lab 2, we’ll explore the fundamental data structures that are essential for data analysis
in R: vectors, matrices, data frames, and lists. Mastering these structures will enable
you to handle data efficiently and perform various operations crucial for statistical analysis
and data science tasks.

By the end of this lab, you will be able to:

• Identify Fundamental Data Structures
Recognize and describe the key characteristics of vectors, matrices, data frames, and lists
in R.

• Create Data Structures
Construct vectors, matrices, data frames, and lists using appropriate functions and syn-
tax in R.

• Manipulate Data Structures
Perform operations such as indexing, slicing, and modifying elements within vectors,
matrices, data frames, and lists.

• Apply Appropriate Operations and Functions
Utilize relevant R functions and operators to perform calculations and transformations
specific to each data type.

• Demonstrate Understanding Through Application
Solve problems and complete exercises that require the correct application of operations
and functions to manipulate and analyze data within these structures.

By completing Lab 2, you’ll build a solid foundation in handling data structures in R, which
is crucial for more advanced data analysis and programming tasks.

2.1 Introduction

R offers several fundamental data structures to handle diverse data and analytical needs. These
include vectors, matrices, factors, data frames, and lists.

34

Figure 2.1: Data Structures in R Programming

2.2 Experiment 2.1: Vectors

A vector is a one-dimensional array that holds elements of the same data type. This is the
most basic and frequently used data structure in R.

2.2.1 Creating a Vector

To create a vector, use the c() function:

gender <- c("Male", "Female", "Female", "Male", "Female", "Male")

Adding a space after every comma in c() makes your code more readable:

covid_confirmed <- c(31, 30, 37, 25, 33, 34, 26, 32, 23, 45)

covid_confirmed

#> [1] 31 30 37 25 33 34 26 32 23 45

You can check the class of the vector using the class() function:

class(covid_confirmed)

#> [1] "numeric"

35

Figure 2.2: Types of Vectors in R Programming

36

2.2.2 Factor vectors

A categorical variable where each level is a category will be of type factor. For example,
gender is a categorical variable with two levels: “Male” or “Female”.

You can create a factor vector directly using the factor() function:

gender_factor <- factor(c("Male", "Female", "Female", "Male", "Female"))

gender_factor

#> [1] Male Female Female Male Female
#> Levels: Female Male

Check the class and levels:

class(gender_factor) # Returns "factor"

#> [1] "factor"

levels(gender_factor) # Returns "Female" "Male"

#> [1] "Female" "Male"

If you already have a character vector, convert it to a factor vector using as.factor():

gender <- c("Male", "Female", "Female", "Male", "Female")

gender_factor <- as.factor(gender)

gender_factor

#> [1] Male Female Female Male Female
#> Levels: Female Male

class(gender_factor)

#> [1] "factor"

levels(gender_factor)

#> [1] "Female" "Male"

37

2.2.3 Length of a vector

Find the length of a vector using the length() function:

covid_confirmed <- c(31, 30, 37, 25, 33, 34, 26, 32, 23, 45)

length(covid_confirmed)

#> [1] 10

2.2.4 Arithmetic Operations with Vectors

Operations with vector are performed element-wise.

egg_weight1 <- c(59, 56, 61, 68, 52, 53, 69, 54, 57, 51)

egg_weight2 <- c(56, 51, 69, 52, 57, 68, 61, 54, 59, 53)

total_weight <- egg_weight1 + egg_weight2

total_weight

#> [1] 115 107 130 120 109 121 130 108 116 104

2.2.5 Vector selection

To select elements of a vector, use square brackets [] and indicate the index of elements to
select. R indexing starts at 1.

For example:

Weekday Monday Tuesday Wednesday Thursday Friday Saturday Sunday
index 1 2 3 4 5 6 7

weekday <- c("Monday", "Tuesday", "Wednessday", "Thursday", "Friday", "Saturday", "Sunday")

Access the first element:

weekday[1]

#> [1] "Monday"

38

Access the second element:

weekday[2]

#> [1] "Tuesday"

2.2.6 Exercise 2.1.1: Vector Selection

Given the quiz scores of 13 students:

10, 15, 10, 9, 18, 16, 14, 12, 16, 13, 15, 20, 17.

• Create a vector named score containing the data.

• Access individual scores of the 1st, 5th, and 10th students.

• Access them all together.

2.3 Experiment 2.2: Matrices

A matrix is a two-dimensional data structure consisting of a rectangular array of elements of
the same data type, organized into rows and columns. Figure 2.3 illustrates how matrices are
typically represented in mathematics.

Figure 2.3: Matrix Representation in Linear Algebra

39

2.3.1 Creating Matrices

To create a matrix, use the matrix() function:

matrix(data, nrow, ncol, byrow = FALSE)

where:

• data: Elements to arrange in the matrix.

• nrow: Number of rows.

• ncol: Number of columns.

• byrow: Fill matrix by rows if TRUE.

Create the matrix A:

𝐴 = ⎛⎜
⎝

1 −2 5
−3 9 4
5 0 6

⎞⎟
⎠

A <- matrix(c(1, -2, 5, -3, 9, 4, 5, 0, 6), nrow = 3, ncol = 3, byrow = TRUE)

print(A)

#> [,1] [,2] [,3]
#> [1,] 1 -2 5
#> [2,] -3 9 4
#> [3,] 5 0 6

Create the matrix B:

𝐵 = ⎛⎜
⎝

2 −8 14
4 10 16
6 12 18

⎞⎟
⎠

B <- matrix(c(2, 4, 6, -8, 10, 12, 14, 16, 18), nrow = 3, ncol = 3, byrow = FALSE)

print(B)

#> [,1] [,2] [,3]
#> [1,] 2 -8 14
#> [2,] 4 10 16
#> [3,] 6 12 18

40

2.3.2 Matrices slicing

Accessing elements in a matrix is done by using [row, column], between the square brackets,
you indicate the position of the row and column in which the elements to access are. For
example, to access the element in the first row and second column of matrix A, you type A[1,
2]. To access the element in the third row and second column of matrix A, you type A[3,
2].

A[1, 2] # Element in first row, second column

#> [1] -2

A[3, 2] # Element in third row, second column

#> [1] 0

2.3.3 Arithmetic Operation in Matrices

You can perform arithmetic operations on matrices. Consider the following matrices

𝐴 = ⎛⎜
⎝

1 −2 5
−3 9 4
5 0 6

⎞⎟
⎠

𝐵 = ⎛⎜
⎝

2 −8 14
4 10 16
6 12 18

⎞⎟
⎠

A <- matrix(c(1, -3, 5, -2, 9, 0, 5, 4, 6), nrow = 3, ncol = 3, byrow = FALSE)

B <- matrix(c(2, 4, 6, 8, 10, 12, 14, 16, 18), nrow = 3, ncol = 3, byrow = FALSE)

Addition

A + B

#> [,1] [,2] [,3]
#> [1,] 3 6 19
#> [2,] 1 19 20
#> [3,] 11 12 24

41

Multiplication

Matrix multiplication is done using %*% operator:

A %*% B

#> [,1] [,2] [,3]
#> [1,] 24 48 72
#> [2,] 54 114 174
#> [3,] 46 112 178

2.3.4 Exercise 2.2.1: Matrix Transpose

Consider the following matrix 𝐴:

𝐴 = (1 3 5
2 4 6)

Your Task:

Find the transpose of matrix 𝐴, denoted as 𝐴𝑇 .

Tip

Define matrix 𝐴, then use t(A) to find its transpose.

Here’s a starting point for your code:

Define matrix A

A <- matrix(c(...), nrow = ..., ncol = ..., byrow = TRUE)

A_transpose <- ...(A)

Replace the ... with the correct values and complete the exercise!

42

2.3.5 Exercise 2.2.2: Matrix Inverse Multiplication

Given the matrices 𝐴 and 𝐵 below:

𝐴 = (4 7
2 6)

𝐵 = (3 5
1 2)

Your Task:

Calculate 𝐴−1 × 𝐵, where 𝐴−1 is the inverse of matrix 𝐴.

Hint:

• Use the solve() function in R to find the inverse of matrix 𝐴.

• Use the matrix multiplication operator %*% to multiply 𝐴−1 by 𝐵.

Here’s a starting point for your code:

Define matrices A and B
A <- matrix(c(...), nrow = ..., ncol = ..., byrow = TRUE)
B <- matrix(c(...), nrow = ..., ncol = ..., byrow = TRUE)

Find the inverse of A
A_inverse <- solve(A)

Multiply A_inverse by B
result <- A_inverse %*% B

Replace the ... with the correct values for your matrices and complete the exercise!

2.4 Experiment 2.3: Data frame

A data frame is a versatile table-like structure, allowing columns of different data types. It
has variables as columns and observations as rows, similar to a spreadsheet or a SQL table.

43

2.4.1 Creating a Data Frame

To create a data frame, use the data.frame() function:

demographic_data <- data.frame(
age = c(16, 18, 13, 17, 22),
gender = c("Female", "Female", "Male", "Female", "Male"),
bank_account = c(TRUE, FALSE, FALSE, TRUE, FALSE)

)

demographic_data

#> age gender bank_account
#> 1 16 Female TRUE
#> 2 18 Female FALSE
#> 3 13 Male FALSE
#> 4 17 Female TRUE
#> 5 22 Male FALSE

The number 1 2 3 4 5 at the left hand side on your console are row labels. Also, each
column in a data frame is a vector.

Example: COVID 19 Data Frame

Create a data frame with columns states, confirmed cases, recovered cases and death
cases.

states <- c("Lagos", "FCT", "Plateau", "Kaduna", "Rivers", "Oyo")

confirmed_cases <- c(58033, 19753, 9030, 8998, 7018, 6838)

recovered_cases <- c(56990, 19084, 8967, 8905, 6875, 6506)

death_cases <- c(439, 165, 57, 65, 101, 123)

covid_19 <- data.frame(states, confirmed_cases, recovered_cases, death_cases)

covid_19

#> states confirmed_cases recovered_cases death_cases
#> 1 Lagos 58033 56990 439
#> 2 FCT 19753 19084 165

44

#> 3 Plateau 9030 8967 57
#> 4 Kaduna 8998 8905 65
#> 5 Rivers 7018 6875 101
#> 6 Oyo 6838 6506 123

2.4.2 Exploring Data Frames

When working with large datasets, it’s useful to show only part of the data.

1. head(): Shows the first observations.

2. tail(): Shows the last observations.

Both head() and tail() print a top line called header, which contains the names of the
different variables in your data set.

Another method that is often used to get a rapid overview of your dataset is the function
str().

3. str(): shows you the structure of your dataset. The structure of a data frame tells you:

• The total number of observations
• The total number of variables
• A full list of the variables names
• The first observations

Applying the str() function will often be the first thing that you do when receiving a new
dataset. It is a great way to get more insight in your dataset before diving into the real
analysis.

4. names(): Prints each column name.

5. nrow(): Returns the number of rows.

6. ncol(): Returns the number of columns.

7. dim(): Returns the number of rows and columns.

8. View(): Opens a spreadsheet-style data viewer (in RStudio).

9. summary(): Returns summary statistics of all columns.

Consider the following vectors:

45

set.seed(2021) # For reproducibility

gender <- sample(c("Male", "Female"), 120, replace = TRUE)

height <- floor(rnorm(n = 120, mean = 3, sd = 0.5))

weight <- ceiling(rnorm(n = 120, mean = 55, sd = 9))

bmi <- weight / height^2

Create a data frame:

medical_data <- data.frame(gender, height, weight, bmi)

2.4.3 Explore the data

First six observations:

head(medical_data)

#> gender height weight bmi
#> 1 Male 3 47 5.222222
#> 2 Female 2 46 11.500000
#> 3 Female 3 58 6.444444
#> 4 Female 2 64 16.000000
#> 5 Male 3 62 6.888889
#> 6 Female 2 53 13.250000

Last six observations:

tail(medical_data) # To get the last 6 observation

#> gender height weight bmi
#> 115 Male 2 54 13.500000
#> 116 Male 3 66 7.333333
#> 117 Male 3 57 6.333333
#> 118 Male 3 49 5.444444
#> 119 Male 2 51 12.750000
#> 120 Female 3 51 5.666667

Column names:

46

names(medical_data)

#> [1] "gender" "height" "weight" "bmi"

You can also use:

colnames(medical_data)

#> [1] "gender" "height" "weight" "bmi"

View the dataset (in RStudio):

View(medical_data)

Figure 2.4: Data Frame Preview in RStudio: Gender, Height, Weight, and BMI

Descriptive statistics:

summary(medical_data)

#> gender height weight bmi
#> Length:120 Min. :1.000 Min. :37.00 Min. : 2.375
#> Class :character 1st Qu.:2.000 1st Qu.:50.00 1st Qu.: 6.333
#> Mode :character Median :2.000 Median :56.00 Median :11.000
#> Mean :2.433 Mean :55.58 Mean :12.384
#> 3rd Qu.:3.000 3rd Qu.:62.00 3rd Qu.:14.312
#> Max. :4.000 Max. :78.00 Max. :63.000

47

2.4.4 Built-in Datasets

There are several ways to find the included datasets in R. Using data() will give you a list of
available dataset.

data()

Figure 2.5: Sample Datasets Available in the R ‘datasets’ Package

For example, to load the built-in dataset iris, use:

data("iris")

head(iris)

#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa

and to load the built-in dataset airquality, use:

data("airquality")

head(airquality)

48

#> Ozone Solar.R Wind Temp Month Day
#> 1 41 190 7.4 67 5 1
#> 2 36 118 8.0 72 5 2
#> 3 12 149 12.6 74 5 3
#> 4 18 313 11.5 62 5 4
#> 5 NA NA 14.3 56 5 5
#> 6 28 NA 14.9 66 5 6

To get help on a built-in dataset, such as airquality, use:

?airquality

Figure 2.6: Airquality Dataset Documentation in R

2.4.5 Subsetting Data Frames

Every column in a data frame has a name and if you can recall, we can print the names
attribute of a data frame, iris, by using:

names(iris)

#> [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
#> [5] "Species"

and to access a specific column in a data frame by name, you will use the $ operator in the
form of df$colname, where df is the name of the data frame and colname is the name of
the column you are interested in. This operation will then return the column you want as a
vector.

49

Access specific columns using the $ operator

Use the $ operator to get a vector of Sepal.Length from the iris data frame:

iris$Sepal.Length

#> [1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9 5.4 4.8 4.8 4.3 5.8 5.7 5.4 5.1
#> [19] 5.7 5.1 5.4 5.1 4.6 5.1 4.8 5.0 5.0 5.2 5.2 4.7 4.8 5.4 5.2 5.5 4.9 5.0
#> [37] 5.5 4.9 4.4 5.1 5.0 4.5 4.4 5.0 5.1 4.8 5.1 4.6 5.3 5.0 7.0 6.4 6.9 5.5
#> [55] 6.5 5.7 6.3 4.9 6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7 5.6 5.8 6.2 5.6 5.9 6.1
#> [73] 6.3 6.1 6.4 6.6 6.8 6.7 6.0 5.7 5.5 5.5 5.8 6.0 5.4 6.0 6.7 6.3 5.6 5.5
#> [91] 5.5 6.1 5.8 5.0 5.6 5.7 5.7 6.2 5.1 5.7 6.3 5.8 7.1 6.3 6.5 7.6 4.9 7.3
#> [109] 6.7 7.2 6.5 6.4 6.8 5.7 5.8 6.4 6.5 7.7 7.7 6.0 6.9 5.6 7.7 6.3 6.7 7.2
#> [127] 6.2 6.1 6.4 7.2 7.4 7.9 6.4 6.3 6.1 7.7 6.3 6.4 6.0 6.9 6.7 6.9 5.8 6.8
#> [145] 6.7 6.7 6.3 6.5 6.2 5.9

Use the $ operator to get a vector of Species from the iris data frame:

iris$Species

#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa setosa setosa
#> [13] setosa setosa setosa setosa setosa setosa
#> [19] setosa setosa setosa setosa setosa setosa
#> [25] setosa setosa setosa setosa setosa setosa
#> [31] setosa setosa setosa setosa setosa setosa
#> [37] setosa setosa setosa setosa setosa setosa
#> [43] setosa setosa setosa setosa setosa setosa
#> [49] setosa setosa versicolor versicolor versicolor versicolor
#> [55] versicolor versicolor versicolor versicolor versicolor versicolor
#> [61] versicolor versicolor versicolor versicolor versicolor versicolor
#> [67] versicolor versicolor versicolor versicolor versicolor versicolor
#> [73] versicolor versicolor versicolor versicolor versicolor versicolor
#> [79] versicolor versicolor versicolor versicolor versicolor versicolor
#> [85] versicolor versicolor versicolor versicolor versicolor versicolor
#> [91] versicolor versicolor versicolor versicolor versicolor versicolor
#> [97] versicolor versicolor versicolor versicolor virginica virginica
#> [103] virginica virginica virginica virginica virginica virginica
#> [109] virginica virginica virginica virginica virginica virginica
#> [115] virginica virginica virginica virginica virginica virginica
#> [121] virginica virginica virginica virginica virginica virginica
#> [127] virginica virginica virginica virginica virginica virginica

50

#> [133] virginica virginica virginica virginica virginica virginica
#> [139] virginica virginica virginica virginica virginica virginica
#> [145] virginica virginica virginica virginica virginica virginica
#> Levels: setosa versicolor virginica

Because the $ operator returns a vector, you can easily calculate descriptive statistics on
columns of a data frame by applying your favorite vector function (like mean(), sd(), or
table()) to a column using $.

Let’s calculate the mean of Sepal.Length with themean() function and the frequency of each
Species with the table()function in the iris data frame:

mean(iris$Sepal.Length)

#> [1] 5.843333

table(iris$Species)

#>
#> setosa versicolor virginica
#> 50 50 50

Access elements using [row, column]

Just like a matrix, you can access specific data in a data frame by using [row, column], where
rows and columns are vectors of integers.

Data Frame Slicing Interpretation
data[1,] First row and all columns
data[, 2] All rows and second column
data[c(1, 3, 5), 2] Rows 1, 3, 5 and column 2 only
data[1:3, c(1, 3)] First three rows and columns 1 and 3 only
data or data[,] All rows and all columns

51

Data Frame Slicing in R
Examples and Interpretations

Data Frame Slicing Interpretation
data[1,] First row and all columns
data[, 2] All rows and second column
data[c(1, 3, 5), 2] Rows 1, 3, 5 and column 2 only
data[1:3, c(1, 3)] First three rows and columns 1 and 3 only
data or data[,] All rows and all columns

2.4.6 Exercise 2.3.1: Subsetting a Dataframe

Using the airquality dataset:

• Examine the airquality dataset.

• Select the first three columns.

• Select rows 1-3 and columns 1 and 3.

• Select rows 1-5 and column 1.

• Select the first row.

• Select the first 6 rows .

2.5 Experiment 2.4: Lists

A list in R is like a container that can hold various elements, such as vectors, matrices, data
frames, and even other lists.

2.5.1 Creating a List

Use the list() function to create a list:

my_list <- list(
age = 19,
gender = "Male",
pass = TRUE

)

Here, my_list consists of three components:

52

• age: Numeric value.

• gender: Character string.

• pass: Logical value.

2.5.2 Accessing List Elements

To show the contents of a list you can simply type its name as any other object in R:

my_list

#> $age
#> [1] 19
#>
#> $gender
#> [1] "Male"
#>
#> $pass
#> [1] TRUE

You can extract individual element in a list by using double square brackets [[]]. For
example,

my_list[[1]] # Returns 19

#> [1] 19

my_list[["age"]] # Returns 19

#> [1] 19

Using single square brackets [] returns a list containing the element.

my_list[1]

#> $age
#> [1] 19

53

2.6 Summary

In this lab 2, you have acquired foundational skills in R’s basic data structures:

• Understanding the characteristics and differences between vectors, matrices, data
frames, and lists.

• Creating and manipulating these data structures effectively.

• Accessing and modifying data elements within each structure using appropriate in-
dexing and functions.

These skills are essential for any data analysis or data science task in R, and they form the basis
for more advanced topics that you will encounter as you continue learning. Congratulations
on building this crucial foundation!

In the next lab, you’ll explore how to write your own functions in R. Functions are a powerful
tool that will help you streamline your code, automate tasks, and make your programs more
efficient. Get ready to enhance your programming skills by learning how to create custom
functions!

54

3 Writing Custom Functions

In this Lab 3, we will explore how to write your own functions in R. Functions are essential in
programming because they allow you to encapsulate code that performs specific tasks. This
makes your programs more modular, readable, and easier to maintain. By designing custom
functions, you can automate repetitive tasks, streamline your data analysis processes, and
enhance the efficiency of your code.

By the end of this lab, you will be able to:

• Understand the Syntax of Functions in R
Learn how to define functions using the function() keyword, specify arguments, and
structure the function body to perform desired operations.

• Create Custom Functions
Write your own functions to perform specific data analysis tasks, allowing you to reuse
code and avoid repetition.

• Utilize Functions to Modularize and Streamline Code
Break down complex data analysis tasks into smaller, manageable functions to make
your code more organized and maintainable.

• Understand Variable Scope Within Functions
Grasp how variable scope works in R, distinguishing between local and global variables,
and understand how this affects the behavior of your functions.

• Apply Best Practices in Function Design
Implement best practices such as choosing meaningful function names, including docu-
mentation with comments, handling inputs and outputs effectively, and incorporating
error handling.

• Demonstrate Understanding Through Practical Application
Use the functions you create in real data analysis scenarios to show how they can simplify
tasks and improve code efficiency.

By completing Lab 3, you’ll enhance your programming skills in R, enabling you to write code
that is not only effective but also clean, reusable, and easy to understand. These skills are
fundamental for any data analysis or data science work you’ll undertake in the future.

55

3.1 Introduction

Imagine you want to perform a task repeatedly, like squaring numbers or checking for missing
values in a dataset. Instead of writing the same code again and again, you create a function—
a reusable block of code that does this task for you! R already has many built-in functions
such as such as c(), mean(), print(), class(), length(), but we can also write our own to
perform tasks tailored to our needs.

Functions usually take in some form of data structure—like a value, vector, or dataframe—as
an argument, process it, and return a result.

Figure 3.1: Core Functions in R Programming

3.1.1 Types of Functions

Function extends the functionality of R. Broadly, we can categorize functions into two types:

• Built-in Functions: These are pre-defined in R, such as print() and mean().

• User-defined Functions: These are functions you create to perform specific tasks.

3.1.2 Why Write Your Own Function?

Creating your own functions has several advantages:

• Code Reusability: Functions promote code reuse and help you avoid repetition.

56

Figure 3.2: Types of Functions in R Programming

• Improved Readability: They make your code more readable and maintainable.

• Modular Programming: Functions allow for modular programming, where you can
break down complex tasks into smaller, manageable pieces.

3.1.3 When Should You Write a Function?

Consider writing a function whenever you find yourself copying and pasting a block of code
more than twice. If you’re repeating the same code, it’s a good indication that a function
could simplify your work.

3.2 Experiment 3.1: Creating a Function

There are three key steps to creating a new function:

• Function Name: Decide on a descriptive name for your function, such as square_it.

• Function Arguments: Specify the inputs your function will accept inside the
function() keyword, for example, function(x, y).

• Function Body: Write the R code that uses those arguments, enclosed within curly
braces {}. This is where you’ll define what the function does with the inputs—whether
it’s creating a plot, calculating a statistic, running a regression analysis, etc.

The general structure of a function is as follows:

function_name <- function(argument1, argument2, ...) {
Function body
return(value)

}

57

Note

Note that the arguments can be any type of object—such as a scalar, matrix, dataframe,
vector, or logical—and you don’t need to define what they are beforehand.

If you create an object inside a function that you want to use outside of it, you need to return
it using the return() function.

3.2.1 Calling a User-defined Function in R

You can call a user-defined function just like any built-in function, using its name. If the
function accepts parameters or arguments, you pass them when calling the function.

3.2.2 Creating a Function to Square a Number

Let’s start by creating a simple function to square a number. This example will introduce you
to defining and using functions in R.

Defining the Function:

First, we’ll define the function square_it. This function will take a single input, x, and return
its square. Here’s how you would write it:

square_it <- function(x) {
return(x^2)

}

Now, whenever you call square_it() with a numerical input, it will output the square of that
number.

Testing the Function

To verify that the function works as expected, try squaring a few numbers:

• Testing with 12:

square_it(12)

#> [1] 144

• Testing with 6:

square_it(x = 6)

58

#> [1] 36

This basic function highlights the usefulness of custom functions in R, enabling specific oper-
ations with minimal code.

3.2.3 Checking for Missing Values

Next, let’s create a function that checks for missing values in a dataset and counts them.

Defining the Function

We’ll define a function called check_NA as follows:

check_NA <- function(data) {
any_na <- anyNA(data)
na_count <- sum(is.na(data))
announcement <- paste("Any NA:", any_na, ", Total NA:", na_count)
return(announcement)

}

Testing the Function

You can use this function to check for missing values in various datasets.

• For the airquality dataset:

check_NA(airquality)

#> [1] "Any NA: TRUE , Total NA: 44"

• For the iris dataset:

check_NA(iris)

#> [1] "Any NA: FALSE , Total NA: 0"

Running these commands will let you know if there are any missing values in the dataset and
provide the total count of missing values.

59

3.2.4 Data Frame Manipulation Using switch()

Suppose we have a data frame containing information about employees. We want to perform
different operations on this data frame based on user input. The available operations are:

• “summary”: Get a summary of the data frame.

• “add_column”: Add a new column to the data frame.

• “filter”: Filter the data frame based on a specified condition.

• “group_stats”: Calculate group-wise statistics.

To follow along with this example, please refer to Section 1.4.4 for a detailed tutorial and
comprehensive understanding of the switch() function.

Step 1: Create a Sample Data Frame

library(tidyverse)

Sample data frame
staff_data <- data.frame(
EmployeeID = 1:6,
Name = c("Alice", "Ebunlomo", "Festus", "TY Bello", "Fareedah", "Testimony"),
Department = c("HR", "IT", "Finance", "Data Science", "Marketing", "Finance"),
Salary = c(70000, 80000, 75000, 82000, 73000, 78000)

)

staff_data

#> EmployeeID Name Department Salary
#> 1 1 Alice HR 70000
#> 2 2 Ebunlomo IT 80000
#> 3 3 Festus Finance 75000
#> 4 4 TY Bello Data Science 82000
#> 5 5 Fareedah Marketing 73000
#> 6 6 Testimony Finance 78000

60

Step 2: Define the Function

Define the function
data_frame_operation <- function(data, operation = "filter" # or any of "summary", "add_column", "filter", "group_stats"
) {
result <- switch(operation,

Case 1: Summary of the data frame
summary = {
print("Summary of Data Frame:")
summary(data)

},

Case 2: Add a new column 'Bonus' which is 10% of the Salary
add_column = {
data$Bonus <- data$Salary * 0.10
print("Data Frame after adding 'Bonus' column:")
data

},

Case 3: Filter employees with Salary > 75,000
filter = {
filtered_data <- filter(data, Salary > 75000)
print("Filtered Data Frame (Salary > 75,000):")
filtered_data

},

Case 4: Group-wise average salary
group_stats = {
group_summary <- data %>%
group_by(Department) %>%
summarize(Average_Salary = mean(Salary))

print("Group-wise Average Salary:")
group_summary

},

Default case
{
print("Invalid operation. Please choose a valid option.")
NULL

}
)

61

Return the result
return(result)

}

Explanation:

• Function data_frame_operation:

– Parameters:

∗ data: The data frame to operate on.

∗ operation: A string specifying the operation to perform.

– Using switch():

∗ Each case corresponds to a specific operation.

∗ Cases that involve multiple expressions are wrapped in {}.

∗ The last expression in the block is returned as the result of the case.

∗ If no match is found, the final unnamed argument serves as the default case.

– Operations:

∗ “summary”: Provides a summary of the data frame.

∗ “add_column”: Adds a new column Bonus (10% of Salary) to the data frame.

∗ “filter”: Filters the data frame to include only employees with a salary greater
than $75,000.

∗ “group_stats”: Calculates the average salary for each department.

– Default Case: Prints an error message and returns NULL if the operation is invalid.

– Return Value: The result of the operation is returned by the function.

Step 3: Use the Function

Let’s test the function with different operations.

62

Example 1: Summary of the Data Frame

Perform the 'summary' operation
data_frame_operation(staff_data, "summary")

#> [1] "Summary of Data Frame:"

#> EmployeeID Name Department Salary
#> Min. :1.00 Length:6 Length:6 Min. :70000
#> 1st Qu.:2.25 Class :character Class :character 1st Qu.:73500
#> Median :3.50 Mode :character Mode :character Median :76500
#> Mean :3.50 Mean :76333
#> 3rd Qu.:4.75 3rd Qu.:79500
#> Max. :6.00 Max. :82000

Example 2: Add a New Column

Perform the 'add_column' operation
data_frame_operation(staff_data, "add_column")

#> [1] "Data Frame after adding 'Bonus' column:"

#> EmployeeID Name Department Salary Bonus
#> 1 1 Alice HR 70000 7000
#> 2 2 Ebunlomo IT 80000 8000
#> 3 3 Festus Finance 75000 7500
#> 4 4 TY Bello Data Science 82000 8200
#> 5 5 Fareedah Marketing 73000 7300
#> 6 6 Testimony Finance 78000 7800

Example 3: Filter the Data Frame

Perform the 'filter' operation
data_frame_operation(staff_data, "filter")

#> [1] "Filtered Data Frame (Salary > 75,000):"

#> EmployeeID Name Department Salary
#> 1 2 Ebunlomo IT 80000
#> 2 4 TY Bello Data Science 82000
#> 3 6 Testimony Finance 78000

63

Example 4: Group-wise Statistics

Perform the 'group_stats' operation
data_frame_operation(staff_data, "group_stats")

#> [1] "Group-wise Average Salary:"

#> # A tibble: 5 x 2
#> Department Average_Salary
#> <chr> <dbl>
#> 1 Data Science 82000
#> 2 Finance 76500
#> 3 HR 70000
#> 4 IT 80000
#> 5 Marketing 73000

Example 5: Invalid Operation

Attempt an invalid operation
data_frame_operation(staff_data, "view")

#> [1] "Invalid operation. Please choose a valid option."

#> NULL

3.2.5 Exercise 3.1.1: Temperature Conversion

Now, it’s your turn to create a function.

Your Task: Create a function to convert Celsius (C) to Fahrenheit (F). You can use the
formula:

F = C × 1.8 + 32
Instructions:

1. Define the Function

• Name the function celsius_to_fahrenheit.

• It should take one argument, the temperature in Celsius.

2. Implement the Formula

64

• Inside the function, apply the formula to convert Celsius to Fahrenheit.

3. Return the Result

• The function should return the Fahrenheit temperature.

Test Your Function:

Use your function to convert the following Celsius temperatures to Fahrenheit:

• 100°C

• 75°C

• 120°C

For each temperature, call your function and verify that it returns the correct Fahrenheit
value.

3.2.6 Exercise 3.1.2: Pythagoras Theorem

Create a function to :

Your Task: Create a function called pythagoras to calculate the hypotenuse (c) of a right-
angled triangle using Pythagoras’ theorem:

𝑐 = √𝑎2 + 𝑏2

where a and b are the lengths of the other two sides.

Instructions:

1. Define the Function

• Name the function pythagoras.

• It should take two arguments: a and b.

2. Implement the Formula

• Inside the function, calculate the hypotenuse using the Pythagorean theorem.

3. Return the Result

• The function should return the length of the hypotenuse.

65

Figure 3.3: Geometric Representation: Right-Angled Triangle

Test Your Function:

Use your pythagoras function to calculate the hypotenuse for the following triangles:

• For 𝑎 = 4.1 and 𝑏 = 2.6
• For 𝑎 = 3 and 𝑏 = 4

Call your function with these values and verify that it returns the correct hypotenuse length.

3.2.7 Exercise 3.1.3: Staff Data Manipulation Using switch()

Based on the example in Section 3.2.4, try modifying the code to include an additional opera-
tion:

• “raise_salary”: Increase the salary of all employees by 5%.

Instructions:

1. Add a new case to the switch() function for "raise_salary".

2. In this case, increase the Salary column by 5% and return the updated data frame.

3. Test the code by setting operation = "raise_salary".

Your Task:

66

Modify the function to include 'raise_salary' operation
data_frame_operation <- function(..., operation) {
result <- switch(operation,

Existing cases...

Case for 'raise_salary'
raise_salary = {
data$Salary <- data$Salary * ...
print("Data Frame after 5% salary increase:")
data

},

Default case
{
print("Invalid operation. Please choose a valid option.")
NULL

}
)

Return the result
return(...)

}

Test the New Operation

Perform the 'raise_salary' operation
data_frame_operation(staff_data, "---")

Replace the ... with the correct values and complete the exercise!

3.3 Experiment 3.2: Understanding Variable Scope Within
Functions

When writing functions in R, it’s crucial to understand how variables behave inside and outside
those functions. This concept is known as variable scope. Variable scope determines where
a variable is accessible in your code and how changes to variables within functions can affect
variables outside of them.

67

3.3.1 Local vs. Global Variables

• Local Variables: These are variables that are defined within a function. They exist
only during the execution of that function and are not accessible outside of it.

• Global Variables: These are variables that are defined outside of any function. They
exist in the global environment and can be accessed by any part of your script, including
inside functions (unless shadowed by a local variable of the same name).

3.3.2 How Variable Scope Works in R

In R, each function has its own environment. This means that variables created inside a
function (local variables) do not interfere with variables outside the function (global variables),
even if they have the same name.

Example: Local Variable

Let’s look at an example to illustrate this:

greet <- function() {
announcement <- "Hello from inside the function!"
print(announcement)

}

greet() # This will print the announcement defined inside the function

#> [1] "Hello from inside the function!"

print(announcement) # This will result in an error because 'announcement' is not defined globally

#> Error: object 'announcement' not found

In this example, announcement is a local variable within the greet function. Trying to access
announcement outside the function results in an error because it doesn’t exist in the global
environment.

68

Example: Global Variable Access

Functions in R can access global variables unless there is a local variable with the same name:

announcement <- "Hello from the global environment!"

greet <- function() {
print(announcement)

}

greet() # This will print "Hello from the global environment!"

#> [1] "Hello from the global environment!"

Here, the function greet accesses the global variable announcement because there is no local
variable named announcement inside the function.

3.3.3 Variable Shadowing

If a local variable inside a function has the same name as a global variable, the local variable
will shadow the global one within that function:

announcement <- "Hello from the global environment!"

greet <- function() {
announcement <- "Hello from inside the function!"
print(announcement)

}

greet() # Prints: Hello from inside the function!

#> [1] "Hello from inside the function!"

print(announcement) # Prints: Hello from the global environment!

#> [1] "Hello from the global environment!"

In this case, the announcement variable inside greet is local and doesn’t affect the global
announcement variable.

69

3.4 Summary

In this lab, you have developed essential skills in creating custom functions in R:

• Understanding the syntax of functions in R, including how to define functions using
the function() keyword, specify arguments, and structure the function body.

• Creating and utilizing your own custom functions to perform specific data analysis
tasks, promoting code reuse and avoiding repetition.

• Applying functions to modularize and streamline your code, breaking down complex
tasks into smaller, manageable pieces for better organization and maintainability.

• Grasping variable scope within functions, distinguishing between local and global vari-
ables, and understanding how this affects the behavior of your functions.

• Implementing best practices in function design, such as choosing meaningful function
names, including documentation with comments, handling inputs and outputs effectively,
and incorporating error handling.

These skills are fundamental for efficient programming in R and will greatly enhance your
data analysis capabilities. They form a strong foundation for more advanced topics you will
encounter as you continue learning. Congratulations on advancing your programming exper-
tise!

In the next lab, we’ll delve into managing packages, creating reproducible workflows using
RStudio project, and reading data from a file.

70

4 Managing Packages & Workflows

In this Lab 4, we will explore essential practices that will enhance your efficiency and effective-
ness as an R programmer. You’ll learn how to extend R’s capabilities by installing and loading
packages, ensure that your analyses are reproducible using RStudio Projects, proficiently im-
port and export datasets in various formats, and handle missing data responsibly. These skills
are crucial for any data analyst or data scientist, as they enable you to work with a wide range
of data sources, maintain the integrity of your analyses, and share your work with others in a
consistent and reliable manner.

By the end of this lab, you will be able to:

• Install and Load Packages in R
Learn how to find, install, and load packages from CRAN and other repositories to
extend the functionality of R for your data analysis tasks.

• Ensure Reproducibility with R and RStudio Projects
Set up and manage RStudio Projects to organize your work, understand the concept of
the working directory, and adopt best practices to make your data analyses reproducible
and shareable.

• Import and Export Datasets of Various Formats
Import data into R from different file types such as CSV, Excel, SPSS, and more, using
appropriate packages and functions. Export your data frames and analysis results to
various formats for sharing or reporting.

• Handle and Impute Missing Data
Identify missing values in your datasets, understand how they can impact your analyses,
and apply appropriate techniques to handle and impute missing data effectively.

By completing Lab 4, you’ll enhance your ability to manage and analyze data in R efficiently,
ensuring that your work is organized, reproducible, and ready to share with others. These
foundational skills will support your growth as a proficient R programmer and data analyst.

71

4.1 Introduction

In R, a package is a collection of functions, data, and compiled code that extends the basic
functionality of R. Think of it as a toolkit for specific tasks or topics. For example, packages
like tidyr and janitor are designed for data wrangling.

The place where these packages are stored on your computer is called a library. When you
install a package, it gets saved in your library, making it easily accessible when needed.

4.2 Compiling R Packages from Source

To work effectively with packages in R, especially when compiling from source, certain tools
are necessary depending on your operating system.

• Windows: Rtools is a collection of software needed to build R packages from source, in-
cluding a compiler and essential libraries. Since Windows does not natively support code
compilation, Rtools provides these capabilities. You can download Rtools from CRAN:
https://cran.rstudio.com/bin/windows/Rtools/. After downloading and installing the
version of Rtools that matches your R version, R will automatically detect it.

Note

To check your R version, run the following code in the console:

R.version

• Mac OS: Unlike Windows, Mac OS users need the Xcode Command Line Tools, which
provide similar compiling capabilities as Rtools. These tools include necessary libraries
and compilers. You can install Xcode from the Mac App Store: http://itunes.apple.
com/us/app/xcode/id497799835?mt=12 or install the Command Line Tools directly by
entering:

xcode-select --install

• Linux: Most Linux distributions already come with the necessary tools for compiling
packages. If additional developer tools are needed, you can install them via your package
manager, usually by installing packages like build-essential or similar for your Linux
distribution.

72

https://cran.rstudio.com/bin/windows/Rtools/
http://itunes.apple.com/us/app/xcode/id497799835?mt=12
http://itunes.apple.com/us/app/xcode/id497799835?mt=12

Note

On Debian/Ubuntu, you can install the essential software for R package development
and LaTeX (if needed for documentation) with:

sudo apt-get install r-base-dev texlive-full

To ensure all dependencies for building R itself from source are met, you can run:

sudo apt-get build-dep r-base-core

4.3 Experiment 4.1: Installing and Loading Packages

As you work in R, you’ll often need additional functions that aren’t included in the base
installation. These come in the form of packages, which you can easily install and load into
your R environment.

4.3.1 Installing Packages from CRAN

The Comprehensive R Archive Network (CRAN) hosts thousands of packages. To install a
package from CRAN, use install.packages():

install.packages("package_name")

Note

Replace package_name with the name of the package you want to install.

For example, to install the tidyverse package, use:

install.packages("tidyverse")

Similarly, to install the janitor package, use:

install.packages("janitor")

Warning

Remember to enclose the package name in quotes—either double ("package_name") or
single ('package_name').

73

4.3.2 Installing Packages from External Repositories

Packages not available on CRAN can be installed from external sources like GitHub. First,
install a helper package like devtools or remotes:

install.packages("devtools")
or
install.packages("remotes")

Then, to install a package from GitHub, for example fakir package, use:

devtools::install_github("ThinkR-open/fakir")
or
remotes::install_github("ThinkR-open/fakir")

You can also install development versions of packages using these helper packages. For in-
stance:

remotes::install_github("datalorax/equatiomatic")

4.3.3 Loading Installed Packages

Once a package has been installed, you need to load it into your R session to use its functions.
You can do this by calling the library() function, as demonstrated in the code cell below:

library(package_name)

Here, package_name refers to the specific package you want to load into the R environment.
For example, to load the tidyverse package:

library(tidyverse)

#> -- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
#> v dplyr 1.1.4 v readr 2.1.5
#> v forcats 1.0.0 v stringr 1.5.1
#> v ggplot2 3.5.1 v tibble 3.2.1
#> v lubridate 1.9.3 v tidyr 1.3.1
#> v purrr 1.0.2
#> -- Conflicts -- tidyverse_conflicts() --
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
#> i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

74

Executing this single line of code loads the core tidyverse packages, which are essential tools
for almost every data analysis project1.

Other installed packages can also be loaded in such manner:

library(janitor)

#>
#> Attaching package: 'janitor'

#> The following objects are masked from 'package:stats':
#>
#> chisq.test, fisher.test

library(bulkreadr)

#> Welcome to bulkreadr package! To learn more, please run:
#> browseURL("https://gbganalyst.github.io/bulkreadr")
#> to visit the package website.

#>
#> Attaching package: 'bulkreadr'

#> The following object is masked from 'package:janitor':
#>
#> convert_to_date

If you run this code and get the error message there is no package called "bulkreadr", you’ll
need to first install it, then run library() once again.

install.packages("bulkreadr")

library(bulkreadr)

1It is common for a package to print out messages when you load it. These messages often include information
about the package version, attached packages, or important notes from the authors. For example, when you
load the tidyverse package. If you prefer to suppress these messages, you can use the suppressMessages()
function: suppressMessages(library(tidyverse))

75

Tip

You only need to install a package once, but you must load it each time you start a new
R session.

Figure 4.1: Installing vs. Loading Packages in R

4.3.4 Using Functions from a Package

There are two main ways to call a function from a package:

1. Load the package and call the function directly:

library(janitor)

clean_names(data_frame)

2. Use the :: operator to call a function without loading the package:

janitor::clean_names(data_frame)

Tip

Using package::function() is helpful because it makes your code clearer about where
the function comes from, especially if multiple packages have functions with the same
name.

Example:

Let’s see how to load a package and use one of its functions. We’ll use the clean_names()
function from the janitor package to clean column names in a data frame.

library(janitor)

76

Now, let’s clean the column names of iris data frame:

clean_names(iris)

#> sepal_length sepal_width petal_length petal_width species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5.0 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> 11 5.4 3.7 1.5 0.2 setosa
#> 12 4.8 3.4 1.6 0.2 setosa
#> 13 4.8 3.0 1.4 0.1 setosa
#> 14 4.3 3.0 1.1 0.1 setosa
#> 15 5.8 4.0 1.2 0.2 setosa
#> 16 5.7 4.4 1.5 0.4 setosa
#> 17 5.4 3.9 1.3 0.4 setosa
#> 18 5.1 3.5 1.4 0.3 setosa
#> 19 5.7 3.8 1.7 0.3 setosa
#> 20 5.1 3.8 1.5 0.3 setosa
#> 21 5.4 3.4 1.7 0.2 setosa
#> 22 5.1 3.7 1.5 0.4 setosa
#> 23 4.6 3.6 1.0 0.2 setosa
#> 24 5.1 3.3 1.7 0.5 setosa
#> 25 4.8 3.4 1.9 0.2 setosa
#> 26 5.0 3.0 1.6 0.2 setosa
#> 27 5.0 3.4 1.6 0.4 setosa
#> 28 5.2 3.5 1.5 0.2 setosa
#> 29 5.2 3.4 1.4 0.2 setosa
#> 30 4.7 3.2 1.6 0.2 setosa
#> 31 4.8 3.1 1.6 0.2 setosa
#> 32 5.4 3.4 1.5 0.4 setosa
#> 33 5.2 4.1 1.5 0.1 setosa
#> 34 5.5 4.2 1.4 0.2 setosa
#> 35 4.9 3.1 1.5 0.2 setosa
#> 36 5.0 3.2 1.2 0.2 setosa
#> 37 5.5 3.5 1.3 0.2 setosa
#> 38 4.9 3.6 1.4 0.1 setosa

77

#> 39 4.4 3.0 1.3 0.2 setosa
#> 40 5.1 3.4 1.5 0.2 setosa
#> 41 5.0 3.5 1.3 0.3 setosa
#> 42 4.5 2.3 1.3 0.3 setosa
#> 43 4.4 3.2 1.3 0.2 setosa
#> 44 5.0 3.5 1.6 0.6 setosa
#> 45 5.1 3.8 1.9 0.4 setosa
#> 46 4.8 3.0 1.4 0.3 setosa
#> 47 5.1 3.8 1.6 0.2 setosa
#> 48 4.6 3.2 1.4 0.2 setosa
#> 49 5.3 3.7 1.5 0.2 setosa
#> 50 5.0 3.3 1.4 0.2 setosa
#> 51 7.0 3.2 4.7 1.4 versicolor
#> 52 6.4 3.2 4.5 1.5 versicolor
#> 53 6.9 3.1 4.9 1.5 versicolor
#> 54 5.5 2.3 4.0 1.3 versicolor
#> 55 6.5 2.8 4.6 1.5 versicolor
#> 56 5.7 2.8 4.5 1.3 versicolor
#> 57 6.3 3.3 4.7 1.6 versicolor
#> 58 4.9 2.4 3.3 1.0 versicolor
#> 59 6.6 2.9 4.6 1.3 versicolor
#> 60 5.2 2.7 3.9 1.4 versicolor
#> 61 5.0 2.0 3.5 1.0 versicolor
#> 62 5.9 3.0 4.2 1.5 versicolor
#> 63 6.0 2.2 4.0 1.0 versicolor
#> 64 6.1 2.9 4.7 1.4 versicolor
#> 65 5.6 2.9 3.6 1.3 versicolor
#> 66 6.7 3.1 4.4 1.4 versicolor
#> 67 5.6 3.0 4.5 1.5 versicolor
#> 68 5.8 2.7 4.1 1.0 versicolor
#> 69 6.2 2.2 4.5 1.5 versicolor
#> 70 5.6 2.5 3.9 1.1 versicolor
#> 71 5.9 3.2 4.8 1.8 versicolor
#> 72 6.1 2.8 4.0 1.3 versicolor
#> 73 6.3 2.5 4.9 1.5 versicolor
#> 74 6.1 2.8 4.7 1.2 versicolor
#> 75 6.4 2.9 4.3 1.3 versicolor
#> 76 6.6 3.0 4.4 1.4 versicolor
#> 77 6.8 2.8 4.8 1.4 versicolor
#> 78 6.7 3.0 5.0 1.7 versicolor
#> 79 6.0 2.9 4.5 1.5 versicolor
#> 80 5.7 2.6 3.5 1.0 versicolor
#> 81 5.5 2.4 3.8 1.1 versicolor

78

#> 82 5.5 2.4 3.7 1.0 versicolor
#> 83 5.8 2.7 3.9 1.2 versicolor
#> 84 6.0 2.7 5.1 1.6 versicolor
#> 85 5.4 3.0 4.5 1.5 versicolor
#> 86 6.0 3.4 4.5 1.6 versicolor
#> 87 6.7 3.1 4.7 1.5 versicolor
#> 88 6.3 2.3 4.4 1.3 versicolor
#> 89 5.6 3.0 4.1 1.3 versicolor
#> 90 5.5 2.5 4.0 1.3 versicolor
#> 91 5.5 2.6 4.4 1.2 versicolor
#> 92 6.1 3.0 4.6 1.4 versicolor
#> 93 5.8 2.6 4.0 1.2 versicolor
#> 94 5.0 2.3 3.3 1.0 versicolor
#> 95 5.6 2.7 4.2 1.3 versicolor
#> 96 5.7 3.0 4.2 1.2 versicolor
#> 97 5.7 2.9 4.2 1.3 versicolor
#> 98 6.2 2.9 4.3 1.3 versicolor
#> 99 5.1 2.5 3.0 1.1 versicolor
#> 100 5.7 2.8 4.1 1.3 versicolor
#> 101 6.3 3.3 6.0 2.5 virginica
#> 102 5.8 2.7 5.1 1.9 virginica
#> 103 7.1 3.0 5.9 2.1 virginica
#> 104 6.3 2.9 5.6 1.8 virginica
#> 105 6.5 3.0 5.8 2.2 virginica
#> 106 7.6 3.0 6.6 2.1 virginica
#> 107 4.9 2.5 4.5 1.7 virginica
#> 108 7.3 2.9 6.3 1.8 virginica
#> 109 6.7 2.5 5.8 1.8 virginica
#> 110 7.2 3.6 6.1 2.5 virginica
#> 111 6.5 3.2 5.1 2.0 virginica
#> 112 6.4 2.7 5.3 1.9 virginica
#> 113 6.8 3.0 5.5 2.1 virginica
#> 114 5.7 2.5 5.0 2.0 virginica
#> 115 5.8 2.8 5.1 2.4 virginica
#> 116 6.4 3.2 5.3 2.3 virginica
#> 117 6.5 3.0 5.5 1.8 virginica
#> 118 7.7 3.8 6.7 2.2 virginica
#> 119 7.7 2.6 6.9 2.3 virginica
#> 120 6.0 2.2 5.0 1.5 virginica
#> 121 6.9 3.2 5.7 2.3 virginica
#> 122 5.6 2.8 4.9 2.0 virginica
#> 123 7.7 2.8 6.7 2.0 virginica
#> 124 6.3 2.7 4.9 1.8 virginica

79

#> 125 6.7 3.3 5.7 2.1 virginica
#> 126 7.2 3.2 6.0 1.8 virginica
#> 127 6.2 2.8 4.8 1.8 virginica
#> 128 6.1 3.0 4.9 1.8 virginica
#> 129 6.4 2.8 5.6 2.1 virginica
#> 130 7.2 3.0 5.8 1.6 virginica
#> 131 7.4 2.8 6.1 1.9 virginica
#> 132 7.9 3.8 6.4 2.0 virginica
#> 133 6.4 2.8 5.6 2.2 virginica
#> 134 6.3 2.8 5.1 1.5 virginica
#> 135 6.1 2.6 5.6 1.4 virginica
#> 136 7.7 3.0 6.1 2.3 virginica
#> 137 6.3 3.4 5.6 2.4 virginica
#> 138 6.4 3.1 5.5 1.8 virginica
#> 139 6.0 3.0 4.8 1.8 virginica
#> 140 6.9 3.1 5.4 2.1 virginica
#> 141 6.7 3.1 5.6 2.4 virginica
#> 142 6.9 3.1 5.1 2.3 virginica
#> 143 5.8 2.7 5.1 1.9 virginica
#> 144 6.8 3.2 5.9 2.3 virginica
#> 145 6.7 3.3 5.7 2.5 virginica
#> 146 6.7 3.0 5.2 2.3 virginica
#> 147 6.3 2.5 5.0 1.9 virginica
#> 148 6.5 3.0 5.2 2.0 virginica
#> 149 6.2 3.4 5.4 2.3 virginica
#> 150 5.9 3.0 5.1 1.8 virginica

Example:

Using a function without loading the package:

janitor::clean_names(iris)

#> sepal_length sepal_width petal_length petal_width species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5.0 3.4 1.5 0.2 setosa

80

#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> 11 5.4 3.7 1.5 0.2 setosa
#> 12 4.8 3.4 1.6 0.2 setosa
#> 13 4.8 3.0 1.4 0.1 setosa
#> 14 4.3 3.0 1.1 0.1 setosa
#> 15 5.8 4.0 1.2 0.2 setosa
#> 16 5.7 4.4 1.5 0.4 setosa
#> 17 5.4 3.9 1.3 0.4 setosa
#> 18 5.1 3.5 1.4 0.3 setosa
#> 19 5.7 3.8 1.7 0.3 setosa
#> 20 5.1 3.8 1.5 0.3 setosa
#> 21 5.4 3.4 1.7 0.2 setosa
#> 22 5.1 3.7 1.5 0.4 setosa
#> 23 4.6 3.6 1.0 0.2 setosa
#> 24 5.1 3.3 1.7 0.5 setosa
#> 25 4.8 3.4 1.9 0.2 setosa
#> 26 5.0 3.0 1.6 0.2 setosa
#> 27 5.0 3.4 1.6 0.4 setosa
#> 28 5.2 3.5 1.5 0.2 setosa
#> 29 5.2 3.4 1.4 0.2 setosa
#> 30 4.7 3.2 1.6 0.2 setosa
#> 31 4.8 3.1 1.6 0.2 setosa
#> 32 5.4 3.4 1.5 0.4 setosa
#> 33 5.2 4.1 1.5 0.1 setosa
#> 34 5.5 4.2 1.4 0.2 setosa
#> 35 4.9 3.1 1.5 0.2 setosa
#> 36 5.0 3.2 1.2 0.2 setosa
#> 37 5.5 3.5 1.3 0.2 setosa
#> 38 4.9 3.6 1.4 0.1 setosa
#> 39 4.4 3.0 1.3 0.2 setosa
#> 40 5.1 3.4 1.5 0.2 setosa
#> 41 5.0 3.5 1.3 0.3 setosa
#> 42 4.5 2.3 1.3 0.3 setosa
#> 43 4.4 3.2 1.3 0.2 setosa
#> 44 5.0 3.5 1.6 0.6 setosa
#> 45 5.1 3.8 1.9 0.4 setosa
#> 46 4.8 3.0 1.4 0.3 setosa
#> 47 5.1 3.8 1.6 0.2 setosa
#> 48 4.6 3.2 1.4 0.2 setosa
#> 49 5.3 3.7 1.5 0.2 setosa
#> 50 5.0 3.3 1.4 0.2 setosa
#> 51 7.0 3.2 4.7 1.4 versicolor

81

#> 52 6.4 3.2 4.5 1.5 versicolor
#> 53 6.9 3.1 4.9 1.5 versicolor
#> 54 5.5 2.3 4.0 1.3 versicolor
#> 55 6.5 2.8 4.6 1.5 versicolor
#> 56 5.7 2.8 4.5 1.3 versicolor
#> 57 6.3 3.3 4.7 1.6 versicolor
#> 58 4.9 2.4 3.3 1.0 versicolor
#> 59 6.6 2.9 4.6 1.3 versicolor
#> 60 5.2 2.7 3.9 1.4 versicolor
#> 61 5.0 2.0 3.5 1.0 versicolor
#> 62 5.9 3.0 4.2 1.5 versicolor
#> 63 6.0 2.2 4.0 1.0 versicolor
#> 64 6.1 2.9 4.7 1.4 versicolor
#> 65 5.6 2.9 3.6 1.3 versicolor
#> 66 6.7 3.1 4.4 1.4 versicolor
#> 67 5.6 3.0 4.5 1.5 versicolor
#> 68 5.8 2.7 4.1 1.0 versicolor
#> 69 6.2 2.2 4.5 1.5 versicolor
#> 70 5.6 2.5 3.9 1.1 versicolor
#> 71 5.9 3.2 4.8 1.8 versicolor
#> 72 6.1 2.8 4.0 1.3 versicolor
#> 73 6.3 2.5 4.9 1.5 versicolor
#> 74 6.1 2.8 4.7 1.2 versicolor
#> 75 6.4 2.9 4.3 1.3 versicolor
#> 76 6.6 3.0 4.4 1.4 versicolor
#> 77 6.8 2.8 4.8 1.4 versicolor
#> 78 6.7 3.0 5.0 1.7 versicolor
#> 79 6.0 2.9 4.5 1.5 versicolor
#> 80 5.7 2.6 3.5 1.0 versicolor
#> 81 5.5 2.4 3.8 1.1 versicolor
#> 82 5.5 2.4 3.7 1.0 versicolor
#> 83 5.8 2.7 3.9 1.2 versicolor
#> 84 6.0 2.7 5.1 1.6 versicolor
#> 85 5.4 3.0 4.5 1.5 versicolor
#> 86 6.0 3.4 4.5 1.6 versicolor
#> 87 6.7 3.1 4.7 1.5 versicolor
#> 88 6.3 2.3 4.4 1.3 versicolor
#> 89 5.6 3.0 4.1 1.3 versicolor
#> 90 5.5 2.5 4.0 1.3 versicolor
#> 91 5.5 2.6 4.4 1.2 versicolor
#> 92 6.1 3.0 4.6 1.4 versicolor
#> 93 5.8 2.6 4.0 1.2 versicolor
#> 94 5.0 2.3 3.3 1.0 versicolor

82

#> 95 5.6 2.7 4.2 1.3 versicolor
#> 96 5.7 3.0 4.2 1.2 versicolor
#> 97 5.7 2.9 4.2 1.3 versicolor
#> 98 6.2 2.9 4.3 1.3 versicolor
#> 99 5.1 2.5 3.0 1.1 versicolor
#> 100 5.7 2.8 4.1 1.3 versicolor
#> 101 6.3 3.3 6.0 2.5 virginica
#> 102 5.8 2.7 5.1 1.9 virginica
#> 103 7.1 3.0 5.9 2.1 virginica
#> 104 6.3 2.9 5.6 1.8 virginica
#> 105 6.5 3.0 5.8 2.2 virginica
#> 106 7.6 3.0 6.6 2.1 virginica
#> 107 4.9 2.5 4.5 1.7 virginica
#> 108 7.3 2.9 6.3 1.8 virginica
#> 109 6.7 2.5 5.8 1.8 virginica
#> 110 7.2 3.6 6.1 2.5 virginica
#> 111 6.5 3.2 5.1 2.0 virginica
#> 112 6.4 2.7 5.3 1.9 virginica
#> 113 6.8 3.0 5.5 2.1 virginica
#> 114 5.7 2.5 5.0 2.0 virginica
#> 115 5.8 2.8 5.1 2.4 virginica
#> 116 6.4 3.2 5.3 2.3 virginica
#> 117 6.5 3.0 5.5 1.8 virginica
#> 118 7.7 3.8 6.7 2.2 virginica
#> 119 7.7 2.6 6.9 2.3 virginica
#> 120 6.0 2.2 5.0 1.5 virginica
#> 121 6.9 3.2 5.7 2.3 virginica
#> 122 5.6 2.8 4.9 2.0 virginica
#> 123 7.7 2.8 6.7 2.0 virginica
#> 124 6.3 2.7 4.9 1.8 virginica
#> 125 6.7 3.3 5.7 2.1 virginica
#> 126 7.2 3.2 6.0 1.8 virginica
#> 127 6.2 2.8 4.8 1.8 virginica
#> 128 6.1 3.0 4.9 1.8 virginica
#> 129 6.4 2.8 5.6 2.1 virginica
#> 130 7.2 3.0 5.8 1.6 virginica
#> 131 7.4 2.8 6.1 1.9 virginica
#> 132 7.9 3.8 6.4 2.0 virginica
#> 133 6.4 2.8 5.6 2.2 virginica
#> 134 6.3 2.8 5.1 1.5 virginica
#> 135 6.1 2.6 5.6 1.4 virginica
#> 136 7.7 3.0 6.1 2.3 virginica
#> 137 6.3 3.4 5.6 2.4 virginica

83

#> 138 6.4 3.1 5.5 1.8 virginica
#> 139 6.0 3.0 4.8 1.8 virginica
#> 140 6.9 3.1 5.4 2.1 virginica
#> 141 6.7 3.1 5.6 2.4 virginica
#> 142 6.9 3.1 5.1 2.3 virginica
#> 143 5.8 2.7 5.1 1.9 virginica
#> 144 6.8 3.2 5.9 2.3 virginica
#> 145 6.7 3.3 5.7 2.5 virginica
#> 146 6.7 3.0 5.2 2.3 virginica
#> 147 6.3 2.5 5.0 1.9 virginica
#> 148 6.5 3.0 5.2 2.0 virginica
#> 149 6.2 3.4 5.4 2.3 virginica
#> 150 5.9 3.0 5.1 1.8 virginica

4.4 Experiment 4.2: Data Analysis Reproducibility with R and
RStudio Projects

Reproducibility is vital in data analysis. Using RStudio Projects helps you organize your work
and ensures that your analyses can be easily replicated.

Figure 4.2: Key Aspects of Reproducibility in Research

4.4.1 Where Does Your Analysis Live?

The working directory is where R looks for files to load and where it saves output files. You
can see your current working directory at the top of the console:

84

Figure 4.3: Console

Or by running:

getwd()

[1] "C:/Users/Ezekiel Adebayo/Desktop/stock-market"

If you need to change your working directory, you can use:

setwd("/path/to/your/data_analysis")

Alternatively, you can use the keyboard shortcut Ctrl + Shift + H in RStudio to choose
your specific directory.

4.4.2 Paths and Directories

• Absolute Paths: These start from the root of your file system (e.g., C:/Users/YourName/Documents/data.csv).
Avoid using absolute paths in your scripts because they’re specific to your computer.

• Relative Paths: These are relative to your working directory (e.g., data/data.csv).
Using relative paths makes your scripts portable and easier to share.

4.4.3 RStudio Projects

An RStudio Project is an excellent way to keep everything related to your analysis—scripts,
data files, figures—all in one organized place. When you set up a project, RStudio auto-
matically sets the working directory to your project folder. This feature is incredibly helpful
because it keeps file paths consistent and makes your work reproducible, no matter where it’s
opened. For example, here’s a look at how an RStudio project might be organized, as shown
in Figure 4.4.

4.4.3.1 Creating a New RStudio Project

Let’s create a new RStudio project. You can do this by following these simple steps:

1. Go to: File → New Project

2. Choose: Existing Directory

85

Figure 4.4: Organization of an R Project Directory

Figure 4.5: Creating a New Project in RStudio

86

3. Select the folder you want as your project’s working directory.

4. Click: Create Project

Figure 4.6: Creating a New R Project from an Existing Directory

Once you click “Create Project”, you’re all set! You’ll be inside your new RStudio project.

Figure 4.7: RStudio Project: Stock Market Price Scraper Using R

To open this project later, just click the .Rproj file in your project folder, and you’ll be right
back in the organized workspace you set up.

4.5 Experiment 4.3: Importing and exporting data in R

Data import and export are essential steps in data science. With R, you can bring in data from
spreadsheets, databases, and many other formats, then save your processed results. Some of

87

Figure 4.8: Organization of an R Project Directory

the popular R packages for data import are shown in Figure 4.9:

Figure 4.9: Data Import Packages in R

Note

Packages like readr, readxl, and haven are part of the tidyverse, so they come pre-
installed with it—no need for separate installations. Here’s a full list of tidyverse pack-
ages:

tidyverse::tidyverse_packages()

#> [1] "broom" "conflicted" "cli" "dbplyr"
#> [5] "dplyr" "dtplyr" "forcats" "ggplot2"
#> [9] "googledrive" "googlesheets4" "haven" "hms"
#> [13] "httr" "jsonlite" "lubridate" "magrittr"
#> [17] "modelr" "pillar" "purrr" "ragg"
#> [21] "readr" "readxl" "reprex" "rlang"

88

#> [25] "rstudioapi" "rvest" "stringr" "tibble"
#> [29] "tidyr" "xml2" "tidyverse"

Note

You don’t need to install any of these packages individually since they’re all included
with the tidyverse installation.

4.5.1 Packages for Reading and Writing Data in R

R programming has some fantastic packages that make importing and exporting data simple
and straightforward. Let’s go through a few of the most commonly used packages and functions
that you’ll need to know when working with data in R.

readr Package

The readr package is your go-to for handling CSV files, which are very common in data
analysis. Here are the two main functions you’ll use:

• read_csv(): This function lets you import data from a CSV file into R as a data frame.
Think of it as loading your data from a spreadsheet directly into R for analysis.

• write_csv(): Once you’re done with your data analysis and want to save your results,
this function exports your data frame to a CSV file. It’s great for sharing your data or
saving a backup!

readxl Package

The readxl package is specifically designed for Excel files. This is super useful if you’re
working with .xlsx files.

• read_xlsx(): Use this function to import an Excel file directly into R. It’s similar to
read_csv() but for Excel formats.

writexl Package

When you need to export your data to an Excel file, writexl is a handy package to have.

• write_xlsx(): This function allows you to export your data frame to an Excel file.
Perfect for sharing your work with colleagues who prefer Excel!

89

haven Package

The haven package is here to help when you’re working with data from statistical software
like SPSS and Stata.

• read_sav(): This function imports data from SPSS files (files with .sav extension) into
R.

• write_sav(): Exports a data frame from R back to SPSS format.

• read_dta(): For Stata users, this function imports Stata files into R.

• write_dta(): Similarly, this function lets you export data frames to Stata format.

rio Package

The rio package is like the Swiss Army knife of data import and export. It can handle multiple
file types, so you don’t need to remember specific functions for each format.

• import(): Use this function to import data from nearly any file type—CSV, Excel, SPSS,
Stata, you name it.

• export(): Just like import(), this function can export your data frame to a wide variety
of formats.

Tip

For more details on all the options available with rio package, check out the rio docu-
mentation.

4.5.2 Working with Projects in RStudio

When we’re working on projects in R, especially those that involve reading and writing data, it’s
best to set up an RStudio project. An RStudio project automatically manages your working
directory, making sure you’re always in the right folder, which is essential when importing and
exporting data. By using relative paths (like data/my_file.csv), your code becomes more
portable and less dependent on your specific folder structure.

In practice, this setup will save you from having to manually set or adjust your working
directory every time you start R. So when you’re working in a project, loading and saving files
becomes as easy as referencing their relative file paths.

90

https://www.rdocumentation.org/packages/rio/versions/1.2.3
https://www.rdocumentation.org/packages/rio/versions/1.2.3

Example: Importing CSV Data

Let’s practice importing data using the gapminder.csv file.

Instructions:

1. Create a Directory: Make a new folder on your desktop called Experiment 4.2.

2. Download Data: Go to to Google Drive to download the r-data folder (see Sec-
tion A.1 for more information). Once downloaded, unzip the folder and move it into
your Experiment 4.2 folder.

3. Create an RStudio Project: Now, open RStudio and set up a new project:

• Go to File > New Project.

• Select Existing Directory and browse to your Experiment 4.2 folder.

• This project setup will organize your work and keep everything related to this
experiment in one place.

Your project structure should resemble what’s shown in Figure 4.10:

Figure 4.10: Starting a New R Project in RStudio

Now, let’s import the gapminder.csv file from the r-data folder into R. We’ll use the
tidyverse package for easy data manipulation and visualization.

library(tidyverse)
library(readxl) # For reading Excel files
library(haven) # For reading SPSS/Stata/SAS files

Load the gapminder data

gapminder <- read_csv("r-data/gapminder.csv")

91

https://drive.google.com/drive/u/1/folders/1KwoBPCq1I2tWi-OzbDZaDKXbukZI_aPw

#> Rows: 1704 Columns: 6
#> -- Column specification --
#> Delimiter: ","
#> chr (2): country, continent
#> dbl (4): year, lifeExp, pop, gdpPercap
#>
#> i Use `spec()` to retrieve the full column specification for this data.
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Exploring the data
names(gapminder)

#> [1] "country" "continent" "year" "lifeExp" "pop" "gdpPercap"

dim(gapminder)

#> [1] 1704 6

head(gapminder)

#> # A tibble: 6 x 6
#> country continent year lifeExp pop gdpPercap
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Afghanistan Asia 1952 28.8 8425333 779.
#> 2 Afghanistan Asia 1957 30.3 9240934 821.
#> 3 Afghanistan Asia 1962 32.0 10267083 853.
#> 4 Afghanistan Asia 1967 34.0 11537966 836.
#> 5 Afghanistan Asia 1972 36.1 13079460 740.
#> 6 Afghanistan Asia 1977 38.4 14880372 786.

summary(gapminder)

#> country continent year lifeExp
#> Length:1704 Length:1704 Min. :1952 Min. :23.60
#> Class :character Class :character 1st Qu.:1966 1st Qu.:48.20
#> Mode :character Mode :character Median :1980 Median :60.71
#> Mean :1980 Mean :59.47
#> 3rd Qu.:1993 3rd Qu.:70.85
#> Max. :2007 Max. :82.60
#> pop gdpPercap
#> Min. :6.001e+04 Min. : 241.2
#> 1st Qu.:2.794e+06 1st Qu.: 1202.1

92

#> Median :7.024e+06 Median : 3531.8
#> Mean :2.960e+07 Mean : 7215.3
#> 3rd Qu.:1.959e+07 3rd Qu.: 9325.5
#> Max. :1.319e+09 Max. :113523.1

After running this script, you should see your dataset loaded into RStudio, ready for explo-
ration. Your script should look like the one in Figure 4.11:

Figure 4.11: Loading and Exploring Data in RStudio

With this setup, you’re ready to dive into analyzing the gapminder data in R! If you’re working
with other file formats like Excel or SPSS, check out Section 4.5.1 for detailed instructions on
how to import these file types into R.

Example: Exporting Data Frames

Exporting data from R is straightforward. For example, to export the gapminder data frame
as an Excel file:

library(writexl)

write_xlsx(gapminder, "gapminder_nigeria.xlsx")

This will create an Excel file in your project directory as shown in Figure 4.12:

4.6 Experiment 4.4: Dealing with Missing Data in R

Missing data is a common issue in data analysis. Recognizing and handling missing values
appropriately is crucial for accurate analyses. R provides several functions to help you deal
with missing data.

93

Figure 4.12: Exporting Data to Excel in RStudio using write_xlsx()function

4.6.1 Recognizing Missing Values

In R, missing values are represented by NA. Identifying these missing values is crucial for
accurate data analysis. Here are some functions to check for missing data:

• is.na(): Returns a logical vector indicating which elements are NA.

x <- c(1, 2, NA, 4, NA, 6)

is.na(x)

#> [1] FALSE FALSE TRUE FALSE TRUE FALSE

• anyNA(): Checks if there are any NA values in an object. It returns TRUE if there is at
least one NA, and FALSE otherwise.

anyNA(x)

#> [1] TRUE

Let’s apply anyNA() function to a sample salary_data data frame:

salary_data <- data.frame(
Name = c("Alice", "Francisca", "Fatima", "David"),
Age = c(25, NA, 30, 35),
Salary = c(50000, 52000, NA, 55000)

)

salary_data

94

#> Name Age Salary
#> 1 Alice 25 50000
#> 2 Francisca NA 52000
#> 3 Fatima 30 NA
#> 4 David 35 55000

In this data frame, we have missing values for Francisca’s age and Fatima’s salary. We can
use anyNA() to check for any missing values:

anyNA(salary_data)

#> [1] TRUE

This indicates that there are missing values in the data frame. You can also check for missing
values in specific columns:

anyNA(salary_data$Age)

#> [1] TRUE

And for the Name column:

anyNA(salary_data$Name)

#> [1] FALSE

• complete.cases(): Returns a logical vector indicating which rows (cases) are complete,
meaning they have no missing values. For example, using our sample salary_data data
frame:

salary_data

#> Name Age Salary
#> 1 Alice 25 50000
#> 2 Francisca NA 52000
#> 3 Fatima 30 NA
#> 4 David 35 55000

complete.cases(salary_data)

#> [1] TRUE FALSE FALSE TRUE

95

This indicates that rows 2 and 3 contain missing values, meaning rows 2 and 3 are not com-
plete.

If you want to check if there are any missing values across all rows (i.e., if any case is incom-
plete):

anyNA(complete.cases(salary_data))

#> [1] FALSE

4.6.2 Summarizing Missing Data

After identifying that your dataset contains missing values, it’s essential to quantify them to
understand the extent of the issue. Summarizing missing data helps you decide how to handle
these gaps appropriately. To count the total number of missing values in your entire dataset,
you can use the sum() function combined with is.na(). Remember the is.na() function
returns a logical vector where each element is TRUE if the corresponding value in the dataset
is NA, and FALSE otherwise. Summing this logical vector gives you the total count of missing
values because TRUE is treated as 1 and FALSE as 0 in arithmetic operations.

Example:

Suppose you have a sampled airquality dataset:

airquality_data <- tibble::tribble(~Ozone, ~Soar.R, ~Wind, ~Temp, ~Month, ~Day, 41, 190, 7.4, 67, 5, 1, 36, 118, 8, 72, 5, 2, 12, 149, 12.6, 74, 5, 3, 18, 313, 11.5, 62, NA, 4, NA, NA, 14.3, 56, NA, 5, 28, NA, 14.9, 66, NA, 6, 23, 299, 8.6, 65, 5, 7, 19, 99, 13.8, 59, 5, 8, 8, 19, 20.1, 61, 5, 9, NA, 194, 8.6, 69, 5, 10)

To count the total number of missing values in this dataset, you would use:

sum(is.na(airquality_data))

#> [1] 7

There are 7 missing values in the entire data frame.

Missing Values Per Column:

colSums(is.na(airquality_data))

#> Ozone Soar.R Wind Temp Month Day
#> 2 2 0 0 3 0

This output indicates:

96

• Ozone column has 2 missing values.

• Solar.R column has 2 missing values.

• Wind column has 0 missing values.

• Temp column has 0 missing values.

• Month column has 3 missing values.

• Daycolumn has 0 missing values.

For a column-wise summary, you can also use the inspect_na() function from the inspectdf
package. First, install and load the package:

install.packages("inspectdf")

inspectdf::inspect_na(airquality_data)

#> # A tibble: 6 x 3
#> col_name cnt pcnt
#> <chr> <int> <dbl>
#> 1 Month 3 30
#> 2 Ozone 2 20
#> 3 Soar.R 2 20
#> 4 Wind 0 0
#> 5 Temp 0 0
#> 6 Day 0 0

4.6.3 Handling Missing Values

There are several strategies to handle missing data:

a. Removing Missing Values:

You can remove rows with missing values using na.omit():

cleaned_data <- na.omit(airquality_data)
cleaned_data

#> # A tibble: 6 x 6
#> Ozone Soar.R Wind Temp Month Day
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 41 190 7.4 67 5 1
#> 2 36 118 8 72 5 2
#> 3 12 149 12.6 74 5 3

97

#> 4 23 299 8.6 65 5 7
#> 5 19 99 13.8 59 5 8
#> 6 8 19 20.1 61 5 9

b. Imputation:

Alternatively, you can fill in missing values with estimates like the mean, median, or mode.

For the Ozone column:

airquality_data$Ozone[is.na(airquality_data$Ozone)] <- mean(airquality_data$Ozone, na.rm = TRUE)

For the Month column:

airquality_data$Month[is.na(airquality_data$Month)] <- median(airquality_data$Month, na.rm = TRUE)

To see the result of the imputation, we can call out the airquality_data:

airquality_data

#> # A tibble: 10 x 6
#> Ozone Soar.R Wind Temp Month Day
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 41 190 7.4 67 5 1
#> 2 36 118 8 72 5 2
#> 3 12 149 12.6 74 5 3
#> 4 18 313 11.5 62 5 4
#> 5 23.1 NA 14.3 56 5 5
#> 6 28 NA 14.9 66 5 6
#> 7 23 299 8.6 65 5 7
#> 8 19 99 13.8 59 5 8
#> 9 8 19 20.1 61 5 9
#> 10 23.1 194 8.6 69 5 10

c. Using packages:

For more advanced imputation methods, you can use packages like mice or Hmisc. Additionally,
the bulkreadr package simplifies the process:

library(bulkreadr)
fill_missing_values(airquality_data, selected_variables = c("Ozone", "Soar.R"), method = "mean")

98

https://gbganalyst.github.io/bulkreadr/

#> # A tibble: 10 x 6
#> Ozone Soar.R Wind Temp Month Day
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 41 190 7.4 67 5 1
#> 2 36 118 8 72 5 2
#> 3 12 149 12.6 74 5 3
#> 4 18 313 11.5 62 5 4
#> 5 23.1 173. 14.3 56 5 5
#> 6 28 173. 14.9 66 5 6
#> 7 23 299 8.6 65 5 7
#> 8 19 99 13.8 59 5 8
#> 9 8 19 20.1 61 5 9
#> 10 23.1 194 8.6 69 5 10

You can also use fill_missing_values() to impute all the missing values in the data frame:

fill_missing_values(airquality_data, method = "median")

#> # A tibble: 10 x 6
#> Ozone Soar.R Wind Temp Month Day
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 41 190 7.4 67 5 1
#> 2 36 118 8 72 5 2
#> 3 12 149 12.6 74 5 3
#> 4 18 313 11.5 62 5 4
#> 5 23.1 170. 14.3 56 5 5
#> 6 28 170. 14.9 66 5 6
#> 7 23 299 8.6 65 5 7
#> 8 19 99 13.8 59 5 8
#> 9 8 19 20.1 61 5 9
#> 10 23.1 194 8.6 69 5 10

4.6.4 Exercise 4.1: Medical Insurance Data

In this exercise, you’ll explore the Medical_insurance_dataset.xlsx file located in the
r-data folder. You can download this file from Google Drive. This dataset contains med-
ical insurance information for various individuals. Below is an overview of each column:

1. User ID: A unique identifier for each individual.

2. Gender: The individual’s gender (‘Male’ or ‘Female’).

3. Age: The age of the individual in years.

99

https://drive.google.com/drive/folders/1KwoBPCq1I2tWi-OzbDZaDKXbukZI_aPw

4. AgeGroup: The age bracket the individual falls into.

5. Estimated Salary: An estimate of the individual’s yearly salary.

6. Purchased: Indicates whether the individual has purchased medical insurance (1 for
Yes, 0 for No).

Your Tasks:

1. Importing and Basic Handling:

• Create a new script and import the data from the Excel file.
• How would you import this data if it’s in SPSS format?
• Use the clean_names() function from the janitor package to make variable names

consistent and easy to work with.
• Can you display the first three rows of the dataset?
• How many rows and columns does the dataset have?

2. Understanding the Data:

• What are the column names in the dataset?
• Can you identify the data types of each column?
• How would you handle missing values if there are any?

3. Basic Descriptive Statistics:

• What is the average age of the individuals in the dataset?
• What’s the range of the estimated salaries?

4.7 Summary

In Lab 4, you have acquired essential skills to enhance your efficiency and effectiveness as an
R programmer:

• Installing and Loading Packages: You learned how to find, install, and load packages
from CRAN and external repositories like GitHub.

• Handling and Imputing Missing Data: You explored methods to identify missing
values using functions like is.na(), anyNA(), and complete.cases().

• Reproducible Workflows with RStudio Projects: You discovered the importance
of organizing your work within RStudio Projects.

• Importing and Exporting Data: You practiced importing and exporting data in
various formats (CSV, Excel, SPSS) using packages like readr, readxl, and haven.

100

These foundational skills are crucial for efficient data analysis in R, enabling you to work with
diverse data sources, maintain analysis integrity, and collaborate effectively. Congratulations
on advancing your R programming proficiency!

101

5 Data Analysis and Visualization

In Lab 5, we will explore the fundamental aspects of data analysis and visualization using R.
This lab is designed to enhance your proficiency in handling real-world datasets by importing
them into R, performing insightful analyses, and creating compelling visualizations. We’ll start
by introducing the pipe operator |>, a powerful tool that streamlines your code and makes
data manipulation more intuitive. Next, we’ll dive into the dplyr package, learning how to
efficiently manipulate data using functions like select(), filter(), mutate(), arrange(),
and summarise(). Finally, we’ll harness the capabilities of ggplot2 to visualize data, enabling
you to uncover patterns and communicate findings effectively. These skills are essential for
any data analyst or scientist, as they form the backbone of data-driven decision-making and
storytelling.

By the end of this lab, you will be able to:

• Apply the Pipe Operator |> for Streamlined Coding
Use the pipe operator to chain multiple functions together, enhancing code readability
and efficiency.

• Manipulate Data Using dplyr Functions
Employ dplyr verbs such as select(), filter(), arrange(), mutate(), and
summarise() to perform common data manipulation tasks effectively.

• Analyze Datasets to Extract Insights
Conduct exploratory data analysis to understand data distributions, identify patterns,
and detect anomalies.

• Create Visualizations with ggplot2
Develop a variety of plots—including scatter plots, histograms, boxplots, and bar charts—
to visualize data and reveal underlying trends.

• Communicate Findings Effectively
Present analysis results in a clear and insightful manner, using visualizations to enhance
understanding.

By completing Lab 5, you will be well-equipped to tackle more complex data analysis challenges,
making significant strides in your journey to becoming a proficient data professional.

102

5.1 Introduction

Welcome to the fifth chapter of R Programming Fundamentals: A Lab-Based Approach. In
this Lab, we delve into the powerful capabilities of R for data analysis and visualization. R
is not just a programming language; it’s a comprehensive environment designed for statistical
analysis, data modeling, and creating stunning visualizations. Its extensive package ecosystem
and active community make it a top choice for data professionals worldwide.

5.2 Experiment 5.1: The Pipe Operator <%>

One of the most effective tools in R for simplifying your code is the pipe operator. Traditionally,
the <%> operator from the magrittr package has been widely used for this purpose. However,
starting from R version 4.1.0, R introduced a native pipe operator |>. This operator allows
you to express a sequence of operations in a more intuitive and readable manner by chaining
functions together in a linear and logical flow, rather than nesting functions within functions.
In this lab, we will be using the base pipe operator |>, which functions similarly to the
magrittr |> operator.

Imagine you have data frame, data and you want to perform multiple operations on it, such
as applying functions foo and bar in sequence. With the pipe operator, you can write:

data |>
foo() |>
bar()

Instead of the nested approach:

bar(foo(data))

How to configure native pipe operator

To configure RStudio to insert the base pipe operator |> instead of %>% when pressing
Ctrl/Cmd + Shift + M, navigate to the Tools menu, select Global Options…, then go to
the Code section. In the Code options, check the box labeled Use native pipe operator,
|> (requires R 4.1+).

103

Figure 5.1: To insert |>, make sure the “Use native pipe operator” option is checked

How Does the Pipe Operator Work?

The pipe operator automatically passes the output of the previous function as the first argu-
ment to the next function. If a function takes multiple arguments, the piped data is placed as
the first argument:

Without pipe

function(argument1, argument2)

With pipe

argument1 |> function(argument2)

Example 1:

Let’s see the pipe operator in action:

iris |> head()

104

#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa

This is equivalent to:

head(iris)

#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa

Using the pipe operator focuses on the flow of data transformations, making your code more
readable and maintainable.

Example 2:

Here’s another example combining multiple functions:

x <- 4.234

x |>
sqrt() |>
log() |>
round(2)

#> [1] 0.72

This sequence is equivalent to the nested version:

x <- 4.234

round(log(sqrt(x)), 2)

105

#> [1] 0.72

By piping, you avoid deeply nested functions and enhance code clarity.

5.3 Experiment 5.2: Data Manipulation with dplyr

Data comes in all shapes and sizes, and often, it’s not in the ideal format for analysis. This
is where data manipulation comes into play. Data manipulation is a fundamental skill in data
analysis, and dplyr provides a powerful set of tools to transform and summarize your data
efficiently. The dplyr package, part of the tidyverse, is designed to make data manipulation
in R more intuitive and efficient.

5.3.1 Why Use dplyr?

• Simplicity: Provides straightforward functions that are easy to learn and remember.

• Efficiency: Optimized for performance, handling large datasets swiftly.

• Readability: Code written with dplyr is often more readable and easier to maintain.

• Integration: Works seamlessly with other tidyverse packages like ggplot2 and tidyr.

Figure 5.2: Data Exploration and Analysis Workflow

106

5.3.2 Getting Started

First, ensure you have the dplyr package installed and loaded. If you haven’t installed it yet,
you can install the tidyverse, which includes dplyr.

Install the tidyverse package (if not already installed)
install.packages("tidyverse")

Load the tidyverse package
library(tidyverse)

5.3.3 Core dplyr Verbs

The core functions in dplyr are often referred to as “verbs” because they correspond to actions
you can perform on your data. These verbs are:

• select(): Choose variables (columns) based on their names or column positions.

• mutate(): Create new columns or modify existing ones.

• filter(): Select rows based on specific conditions.

• arrange(): Reorder rows based on column values.

• summarise(): Reduce multiple values down to a summary statistic.

Figure 5.3: Key Data Manipulation Functions in dplyr

Additional useful functions include:

• rename(): Rename columns.

• distinct(): Find unique rows.

• count(): Count unique values of a variable.

107

• group_by(): Group data by one or more variables for grouped operations.

When summarise() is paired with group_by(), it allows you to get a summary row for each
group in the data frame.

5.3.4 Using Pipes with dplyr functions

When combined with the pipe operator, dplyr functions create a seamless workflow as shown
in Figure 5.4:

Figure 5.4: Data Transformation Pipeline in dplyr

5.3.5 Example Datasets

We’ll start our exploration by working with two fascinating datasets: the penguins dataset
from the palmerpenguins package1 and the msleep dataset from the ggplot2 package. These
datasets provide rich, real-world data that will help you practice and apply data manipulation
in this book.

The penguins Dataset

The penguins dataset2 contains detailed body measurements for 344 penguins from three
different species—Adélie, Chinstrap, and Gentoo—found on three islands in the Palmer
Archipelago of Antarctica. This dataset includes variables such as:

1If you haven’t installed it yet, you can do so with install.packages("palmerpenguins") and load it using
library(palmerpenguins).

2Horst AM, Hill AP, Gorman KB (2020). palmerpenguins: Palmer Archipelago (Antarctica) penguin data. R
package version 0.1.0. https://allisonhorst.github.io/palmerpenguins/. doi: 10.5281/zenodo.3960218.

108

https://allisonhorst.github.io/palmerpenguins

• Species: The penguin species.
• Island: The island where each penguin was observed.
• Bill Length and Depth: Measurements of the penguin’s bill (beak).
• Flipper Length: The length of the penguin’s flippers.
• Body Mass: The weight of the penguin.
• Sex: The gender of the penguin.

The msleep Dataset

Our second dataset, msleep, comes from the ggplot2 package and contains information on
the sleep habits of 83 different mammals. This dataset includes 11 variables, such as:

• Name: The common name of the mammal.
• Sleep Total: Total amount of sleep per day (in hours).
• Sleep REM: Amount of REM sleep per day.
• Sleep Cycle: Length of the sleep cycle.
• Brain Weight: The brain weight of the animal.
• Body Weight: The body weight of the animal.
• Conservation Status: The conservation status of the species.

Example: using select()

• Purpose: Select specific columns from a data frame.

• Example: select Petal.Length and Petal.Width from the iris data frame.

petal_data <- iris |> select(Petal.Length, Petal.Width)

petal_data |> head()

#> Petal.Length Petal.Width
#> 1 1.4 0.2
#> 2 1.4 0.2
#> 3 1.3 0.2
#> 4 1.5 0.2
#> 5 1.4 0.2
#> 6 1.7 0.4

As you can see, we have selected Petal.Length and Petal.Width from the iris dataframe

109

Example: Using mutate()

• Purpose: Add a new variable or modifies an existing one

• Example: Add a new column Petal.Ratio that is the ratio of Petal.Width to
Petal.Length.

modified_iris <- iris |> mutate(Petal.Ratio = Petal.Width / Petal.Length)

modified_iris |> head()

#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species Petal.Ratio
#> 1 5.1 3.5 1.4 0.2 setosa 0.1428571
#> 2 4.9 3.0 1.4 0.2 setosa 0.1428571
#> 3 4.7 3.2 1.3 0.2 setosa 0.1538462
#> 4 4.6 3.1 1.5 0.2 setosa 0.1333333
#> 5 5.0 3.6 1.4 0.2 setosa 0.1428571
#> 6 5.4 3.9 1.7 0.4 setosa 0.2352941

In this second example, we will be using ggplot2’s built-in dataset msleep, and we are changing
the sleep data from being measured in hours to minutes.

msleep %>%
select(name, sleep_total) %>%
mutate(sleep_total_min = sleep_total * 60)

#> # A tibble: 83 x 3
#> name sleep_total sleep_total_min
#> <chr> <dbl> <dbl>
#> 1 Cheetah 12.1 726
#> 2 Owl monkey 17 1020
#> 3 Mountain beaver 14.4 864
#> 4 Greater short-tailed shrew 14.9 894
#> 5 Cow 4 240
#> 6 Three-toed sloth 14.4 864
#> 7 Northern fur seal 8.7 522
#> 8 Vesper mouse 7 420
#> 9 Dog 10.1 606
#> 10 Roe deer 3 180
#> # i 73 more rows

110

Example: Using filter()

• Purpose: Filters rows based on their values.

• Example: Filter iris dataframe where species is “setosa”.

setosa_flowers <- iris |> filter(Species == "setosa")

setosa_flowers |> head()

#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa

This returned only the rows where the Species column is “setosa”.

Filter with multiple conditions:

filter iris dataframe where species is setosa and Petal.Length is greater 1.5.

setosa_petal_length <- iris |> filter(Species == "setosa", Petal.Length > 1.5)

setosa_petal_length |> head()

#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.4 3.9 1.7 0.4 setosa
#> 2 4.8 3.4 1.6 0.2 setosa
#> 3 5.7 3.8 1.7 0.3 setosa
#> 4 5.4 3.4 1.7 0.2 setosa
#> 5 5.1 3.3 1.7 0.5 setosa
#> 6 4.8 3.4 1.9 0.2 setosa

Example: Using arrange()

• Purpose: Arranges rows by values of a column (default is ascending order).

Ascending order:

111

ordered_by_length <- iris |> arrange(Petal.Length)

ordered_by_length |> head()

#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 4.6 3.6 1.0 0.2 setosa
#> 2 4.3 3.0 1.1 0.1 setosa
#> 3 5.8 4.0 1.2 0.2 setosa
#> 4 5.0 3.2 1.2 0.2 setosa
#> 5 4.7 3.2 1.3 0.2 setosa
#> 6 5.4 3.9 1.3 0.4 setosa

Descending order:

ordered_by_length_desc <- iris |> arrange(desc(Petal.Length))

ordered_by_length_desc |> head()

#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 7.7 2.6 6.9 2.3 virginica
#> 2 7.7 3.8 6.7 2.2 virginica
#> 3 7.7 2.8 6.7 2.0 virginica
#> 4 7.6 3.0 6.6 2.1 virginica
#> 5 7.9 3.8 6.4 2.0 virginica
#> 6 7.3 2.9 6.3 1.8 virginica

Example: Using summarise()

summarise() (or summarize() in American English):

Purpose: Reduces data to a single row by computing summary statistics.

Example: Find the average sepal length for each species, ignoring any missing values.

average_lengths <- iris |> summarise(Avg.Length = mean(Sepal.Length, na.rm = TRUE))

average_lengths

#> Avg.Length
#> 1 5.843333

The code cell produced a single row with the average Sepal.Length.

112

Example: Using group_by() and summarise()

Purpose: Groups the data by one or more columns and is usually used in combination with
summarise() to compute group-wise summaries. That is, it allows you to split the data
frame by one or more variables, apply functions to each group, and then combine the output.
You can also use the group_by() verb to operate within groups of rows with mutate() and
summarize().

Example: Compute the average Sepal Length separately for each species.

iris |>
group_by(Species) |>
summarise(Avg.Length = mean(Sepal.Length, na.rm = TRUE))

#> # A tibble: 3 x 2
#> Species Avg.Length
#> <fct> <dbl>
#> 1 setosa 5.01
#> 2 versicolor 5.94
#> 3 virginica 6.59

Example: Using rename()

• Purpose: Rename columns.

• Example: Change the column name Sepal.Length to Sepal_Length and Species to
Category in the iris dataset.

renamed_iris <- iris |> rename(Sepal_Length = Sepal.Length, Category = Species)

renamed_iris |> head()

#> Sepal_Length Sepal.Width Petal.Length Petal.Width Category
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa

113

Note

data |> rename(new_name = old_name) will rename the old_name column to
new_name.

Further Resources on dplyr

For a deeper dive into dplyr, I highly recommend exploring the comprehensive series by
Suzan. Start with “Data Wrangling Part 1: Basic to Advanced Ways to Select Columns”
and continue through to “Part 4” for valuable insights into data manipulation using
dplyr.

5.3.6 Exercise 5.1: Analyzing the Penguins Dataset

Let’s put your skills into practice with a modified penguins dataset. First, you’ll need to
create a new RStudio project called Experiment 5.1.

1. Importing and Inspecting Data

• Download the penguins dataset.

• Import the data into R.

• Use glimpse(penguins) to get an overview.

• How many rows and columns are there?

2. Filtering Data

• How many penguins are from the Biscoe island?

• Extract data for penguins with a body mass greater than 4,500 grams.

3. Arranging Data

• Arrange the data in descending order based on flipper length.

• Find the top 5 penguins with the highest body mass.

4. Selecting and Mutating

• Select only the columns species, island, and sex.

• Remove the sex column from the dataset.

114

https://suzan.rbind.io/categories/tutorial/
https://docs.google.com/spreadsheets/d/1WfEIF_XnnhhT87KSk-Zo6K25J0S8ZIj7/edit?usp=drive_link&ouid=106220036497399452279&rtpof=true&sd=true

• Convert the flipper length from millimeters to meters and create a new column
flipper_length_m

To convert millimeters to meters, you simply divide the number of millimeters by
1,000. Here’s the conversion formula:

flipper_length_m = flipper_length_mm
1000

• Create a new column BMI calculated as:

BMI = body_mass_g
flipper_length_m2

5. Summarizing and Grouping

• Calculate the average body mass of all penguins.

• Group the data by species and find the average body mass for each species.

6. Combining Operations

• Filter penguins from the Dream island and summarize the average bill length for
each species from this island.

5.4 Experiment 5.3: Data Visualization

Data visualization is the art and science of representing data through graphical means, such
as charts, graphs, and maps. By transforming numerical or textual information into visual
formats, data visualization allows us to see patterns, trends, and insights that might be difficult
or impossible to detect in raw data. It brings data to life, telling stories that are easily
understood and can be quickly communicated to others.

In today’s data-driven world, the ability to visualize data effectively is becoming an essential
skill across various industries—including data science, finance, education, and healthcare. As
we grapple with an ever-growing volume of complex and varied data, visualization provides
the tools we need to make sense of it all and to share our findings in a compelling way.

Visual representations are more effective than descriptive statistics or tables when it comes to
analyzing data. They enable us to:

3For additional insights on data visualization techniques not covered in this book, please refer to the articles
by Harvard Business School, DataCamp and Polymer.

115

https://online.hbs.edu/blog/post/data-visualization-techniques
https://www.datacamp.com/blog/data-visualization-techniques
https://www.polymersearch.com/blog/data-visualization

Figure 5.5: Data Scientist Analyzing Large-Scale Data3.

• Identify Patterns and Trends: Spot relationships within the data that might not be
immediately apparent.

• Understand Distributions: See how data is spread out, where concentrations or gaps
exist.

• Detect Outliers: Quickly identify data points that deviate significantly from the rest
of the dataset.

• Communicate Insights: Present data in a way that is accessible and engaging to
diverse audiences.

By leveraging data visualization, we enhance our ability to analyze complex datasets and to
communicate our findings effectively.

5.4.1 Importance of Data Visualization

Data visualization plays a crucial role in the data analysis process for several reasons:

1. Simplifies Complex Data: Large datasets can be overwhelming when presented in
raw form. Visualization condenses and structures this data, making it understandable
at a glance. For example, a line chart can succinctly display trends over time that would
be difficult to discern from a table of numbers.

2. Reveals Patterns and Trends: Visual tools help us identify relationships within the
data, such as correlations between variables or changes over time. This can lead to new
insights and hypotheses. For instance, a scatter plot might reveal a positive correlation
between hours studied and exam scores.

116

3. Supports Decision Making: Visual evidence provides a compelling basis for conclu-
sions and recommendations. Decision-makers can grasp complex information quickly
and make informed choices. A well-designed dashboard can highlight key performance
indicators, aiding strategic planning.

4. Engages the Audience: Visuals are inherently more engaging than raw numbers or
text. They capture attention and can make presentations more persuasive. Using colorful
charts and interactive elements can enhance audience understanding and retention of
information.

5. Facilitates Communication: Visualization transcends language barriers and can com-
municate complex ideas simply. It enables collaboration across teams and disciplines by
providing a common visual language.

5.4.2 Choosing the Right Visualization

Selecting the appropriate type of visualization is essential to effectively communicate your
data’s story. Here are some considerations to guide your choice:

1. Define Your Objective

• What Do You Want to Communicate?

– Are you aiming to compare values, show the composition of something, under-
stand distribution, or analyze trends over time?

– Clarify the key message or insight you wish to convey.

2. Understand Your Data

• Data Relationships

– Identify the types of variables you have (categorical, numerical, time-series).

– Determine if you are exploring relationships between variables, distributions,
or looking for outliers.

3. Know Your Audience

• Audience Understanding

– Consider the background and expertise of your audience.

– Will they understand complex visualizations, or is a simpler chart more appro-
priate?

– Tailor your visualization to their needs and expectations.

117

4. Consider Practical Constraints

• Medium of Presentation

– Will the visualization be presented digitally, in print, or verbally?

– Interactive visualizations may not translate well to static formats.

• Data Quality and Quantity

– Large datasets may require aggregation.

– Poor quality data may limit the types of visualizations you can use.

5. Aesthetics and Clarity

• Visual Appeal

– Use color, shape, and size effectively to enhance comprehension without over-
whelming the viewer.

– Avoid clutter by keeping designs clean and focused.

6. Ethical Representation

• Accuracy and Honesty

– Ensure scales are appropriate and do not mislead.

– Represent data truthfully to maintain credibility.

By thoughtfully considering these factors, you can choose a visualization that not only presents
your data effectively but also resonates with your audience.

5.4.3 Types of Data Visualization Analysis

Data visualization can be categorized based on the number of variables you are analyzing:

1. Univariate Analysis

• Definition: Examining one variable at a time.

• Purpose: Understand the distribution, central tendency, and spread of a single
variable.

• Common Visualizations:

– Histograms: Show frequency distribution.

– Boxplots: Display median, quartiles, and potential outliers.

118

– Bar Charts: Represent categorical data counts.

Example: Analyzing the distribution of ages in a population using a histogram.

2. Bivariate Analysis

• Definition: Studying the relationship between two variables.

• Purpose: Explore associations, correlations, and potential causations.

• Common Visualizations:

– Scatter Plots: Show relationships between two numerical variables.

– Line Charts: Depict trends over time or ordered categories.

– Heatmaps: Represent data in a matrix form with color encoding.

Example: Investigating the relationship between advertising spend and sales revenue
using a scatter plot.

3. Multivariate Analysis

• Definition: Analyzing more than two variables simultaneously.

• Purpose: Understand complex interactions and higher-dimensional relationships.

• Common Visualizations:

– Bubble Charts: Add a third variable to a scatter plot through size or color.

– Multidimensional Scatter Plots: Use color, shape, and size to represent
additional variables.

– Parallel Coordinates Plot: Visualize high-dimensional data by plotting vari-
ables in parallel axes.

Example: Evaluating factors affecting customer satisfaction by analyzing service quality,
price, and brand reputation together.

Understanding the type of analysis you need guides the selection of appropriate visualization
techniques, ensuring that you capture the necessary insights from your data.

5.4.4 Common Data Visualization Techniques

While there are hundreds of different graphs and charts available, focusing on the core ones
will equip you with the tools needed for most day-to-day analytical tasks.

Let’s explore some of the most commonly used data visualization techniques.

119

Figure 5.6: Common Data Visualization Techniques.

Bar Chart

A bar chart represents categorical data with rectangular bars, where the length of each bar is
proportional to the value it represents. Bars can be plotted vertically or horizontally.

When to Use:

• Comparing quantities across different categories.

• Showing rankings or frequencies.

• Displaying discrete data.

Example Uses:

• Comparing sales figures across different regions.

• Showing the number of students enrolled in various courses.

• Visualizing survey responses by category.

Key Features:

• Categories on one axis (usually the x-axis for vertical bars).

• Values on the other axis (usually the y-axis for vertical bars).

• Bars are separated by spaces to emphasize that the data is discrete.

120

Figure 5.7: Bar Chart Illustration

Histogram

A histogram displays the distribution of a numerical variable by grouping data into continuous
intervals, known as bins. It shows the number of data points that fall within each bin.

When to Use:

• Understanding the distribution of continuous data.

• Identifying patterns such as skewness, modality, or outliers.

• Assessing the probability distribution of a dataset.

Example Uses:

• Displaying the distribution of ages in a population.

• Showing the frequency of test scores among students.

• Analyzing the spread of housing prices in a market.

Key Features:

• Continuous data on the x-axis, divided into bins.

• Frequency or count on the y-axis.

• Bars are adjacent, indicating the continuous nature of the data.

121

Figure 5.8: Histogram Illustration

Circular charts

A circular chart is a type of statistical graphic represented in a circular format to illustrate
numerical proportions. A pie chart and a doughnut chart are examples of circular charts. Each
slice or segment represents a category’s contribution to the whole, making it easy to visualize
parts of a whole in a compact form.

When to Use:

• Showing parts of a whole.

• Representing percentage or proportional data.

• Comparing categories within a dataset where the total represents 100%.

• When there are a limited number of categories (ideally less than six).

Example Uses:

• Displaying market share of different companies.

• Illustrating budget allocations across departments.

• Showing survey results for single-choice questions.

• Comparing population distributions across different regions.

Key Features:

122

• The circle represents 100% of the data.

• Slices or segments are proportional to each category’s percentage.

• Includes both solid circles (pie chart) and circles with a hollow center (doughnut chart).

• Effective for highlighting significant differences between categories.

(a) Pie Chart Illustration (b) Doughnut Chart Illustration

Figure 5.9: Circular Statistical Charts

Note

Circular charts can become difficult to interpret when there are many small or similarly
sized slices. In such cases, alternative visualizations like bar charts or stacked charts
might be more effective. Additionally, a doughnut chart allows for extra data or labeling
in the center space, offering more flexibility in design.

Scatter Plot

A scatter plot uses Cartesian coordinates to display values for typically two variables for a set
of data. Each point represents an observation.

When to Use:

• Exploring relationships or correlations between two continuous numerical variables.

• Detecting patterns, trends, clusters, or outliers.

Example Uses:

123

• Examining the relationship between hours studied and exam scores.

• Analyzing the correlation between advertising spend and sales revenue.

• Investigating the association between temperature and energy consumption.

Key Features:

• One variable on the x-axis, another on the y-axis.

• Points plotted in two-dimensional space.

• Can include a trend line to highlight the overall relationship.

Figure 5.10: Scatter Plot Illustration

Box and Whisker Plot

A box plot summarizes a data set by displaying it along a number line, highlighting the median,
quartiles, and potential outliers.

When to Use:

• Comparing distributions across different categories.

• Identifying central tendency, dispersion, and skewness.

• Highlighting outliers in the data.

124

Example Uses:

• Comparing test scores between different classrooms.

• Analyzing the spread of salaries across industries.

• Visualizing the distribution of delivery times from various suppliers.

Key Features:

• Box shows the interquartile range (IQR), from the first quartile (Q1) to the third quartile
(Q3).

• Line inside the box indicates the median.

• Whiskers extend to the minimum and maximum values within 1.5 * IQR.

• Points outside the whiskers represent outliers.

Figure 5.11: Box Plot Illustration

Line Chart

A line chart displays information as a series of data points called ‘markers’ connected by
straight line segments. It is commonly used to visualize data that changes over time.

When to Use:

• Tracking changes or trends over intervals (e.g., time).

125

• Comparing multiple time series.

• Showing continuous data progression.

Example Uses:

• Monitoring stock prices over time.

• Showing temperature changes throughout the day.

• Visualizing website traffic trends.

Key Features:

• Time or sequential data on the x-axis.

• Quantitative values on the y-axis.

• Lines can represent different categories or groups.

Figure 5.12: Line Chart Illustration

Areas chart

An area chart is similar to a line chart but with the area below the line filled in. It emphasizes
the magnitude of values over time.

When to Use:

• Showing cumulative totals over time.

• Visualizing part-to-whole relationships.

126

• Comparing multiple quantities over time.

Example Uses:

• Displaying total sales over months.

• Visualizing population growth.

• Comparing energy consumption by source over time.

Key Features:

• Time or sequential data on the x-axis.

• Quantitative values on the y-axis.

• Areas can be stacked to show cumulative totals.

Figure 5.13: Area Chart Illustration

These core visualization techniques form the foundation of data storytelling. By mastering
them, you’ll be equipped to handle most day-to-day data visualization tasks effectively4. Re-
member that the key to successful data visualization is not just the choice of chart type but
also clarity, accuracy, and the ability to convey the intended message to your audience.

4For additional insights on data visualization techniques not covered in this book, please refer to the articles
by Harvard Business School, DataCamp and Polymer.

127

https://online.hbs.edu/blog/post/data-visualization-techniques
https://www.datacamp.com/blog/data-visualization-techniques
https://www.polymersearch.com/blog/data-visualization

5.4.5 Data Visualization with ggplot2

R has several systems for making graphs, but ggplot2 is one of the most elegant and versatile
tools for creating high-quality visualizations. The ggplot2 package, part of the tidyverse,
is built upon the principles of the Grammar of Graphics, a systematic approach to describing
and constructing graphs. This grammar provides a coherent framework for building a wide
variety of statistical graphics by mapping data variables to visual properties. The following
are the advantage of ggplot:

Advantages of Using ggplot2

Let’s explore the key benefits that make ggplot2 a preferred choice for data visualization in
R.

• Consistency and Grammar: The structured approach makes it easier to build com-
plex plots by adding layers.

• Customization: Nearly every aspect of the plot can be customized to suit your needs.

• Extension: ggplot2 is extensible, allowing for additional packages like ggthemes,
ggrepel, and plotly for interactive graphics.

• Professional Quality: Produces publication-ready graphics suitable for reports, pre-
sentations, and academic papers.

5.4.5.1 Understanding the Grammar of Graphics

At its core, the Grammar of Graphics breaks down a graphic into semantic components:

1. Data: The dataset to be visualized.

2. Aesthetics (aes()): Mappings between data variables and visual properties, such as
position (x, y), color, size, shape, and transparency. For example:

• x: variable on the x-axis.

• y: variable on the y-axis.

• fill: fill color for areas like bars or boxes.

• color: color of points, lines, or areas.

• size: size of points or lines.

• shape: shape of points.

• alpha: transparency level.

128

• group: identifies series of points with a grouping variable

• facet: create small multiples

3. Geometric Objects (or geoms): These are the fundamental visual components in
ggplot2 that define the type of plot being created. They determine how data points are
visually represented by specifying the form of the plot elements. Each geom function
corresponds to a particular type of visualization, enabling users to create a wide variety
of plots to suit their analytical needs. Examples include geom_point() for a scatter
plot, geom_line() for a line chart, geom_bar() for a bar chart, geom_histogram() for
a histogram, geom_boxplot() for a boxplot, and geom_violin() for a violin plot.

Other Layers:

Additional layers enhance or modify your plot, allowing for customization and refinement:

4. Statistical Transformations (stats): Computations applied to the data before plot-
ting, such as summarizing or smoothing data. For instance, stat_smooth() adds a
smoothed line to a scatter plot.

5. Scales: Control how data values are translated into aesthetic values, such as the range
and breaks of axes, or the mapping of data values to colors.

6. Coordinate Systems: Define the space in which the data is represented, such as Carte-
sian coordinates (coord_cartesian()), polar coordinates (coord_polar()), or flipped
coordinates (coord_flip() - to swap the x and y axes).

7. Facets: Create multiple panels (small multiples) split by one or more variables to display
different subsets of the data by using facet_wrap() or facet_grid().

8. Themes: Customize the non-data components of the plot, like background, gridlines,
text, and overall appearance, using functions like theme_minimal(), theme_bw(),
theme_classic(), or by modifying elements with theme().

9. Labels: Titles, axis labels, legend titles, and other annotations can be added to a plot
by using labs().

5.4.6 Building Plots with ggplot2

To create a plot using ggplot2, you start with the ggplot() function, specifying your data
and aesthetic mappings. You then add layers to the plot using the + operator. Each layer can
add new data, mappings, or geoms, allowing for intricate and customized visualizations. The
basic structure of a ggplot2 plot can be represented as:

ggplot(data = <DATA>, aes(<MAPPINGS>)) +
<GEOM_FUNCTION> + <OTHER_LAYERS>

129

Tip

Please see Section 5.4.5.1 for a breakdown of each component of this structure.

Creating a Scatter Plot with geom_point()

Suppose you want to visualize the relationship between engine displacement and miles per
gallon in the mtcars dataset:

library(tidyverse)

ggplot(data = mtcars, aes(x = disp, y = mpg)) +
geom_point() +
labs(

title = "Engine Displacement vs. Miles Per Gallon",
x = "Displacement (cu.in.)",
y = "Miles per Gallon"

) +
theme_minimal()

10

15

20

25

30

35

100 200 300 400
Displacement (cu.in.)

M
ile

s
pe

r
G

al
lo

n

Engine Displacement vs. Miles Per Gallon

In this example:

• Data: mtcars

130

• Aesthetics: x = disp, y = mpg

• Geometric Object: geom_point() adds points to represent each car.

• Labels: labs() adds a title and axis labels.

• Theme: theme_minimal() provides a clean, minimalist background.

Customizing Aesthetics and Geoms

You can map additional variables to aesthetics to add more dimensions to your plot:

ggplot(data = mtcars, aes(x = disp, y = mpg, color = factor(cyl))) +
geom_point(size = 3) +
labs(

title = "Engine Displacement vs. MPG by Cylinder Count",
x = "Displacement (cu.in.)",
y = "Miles per Gallon",
color = "Cylinders"

) +
theme_classic()

10

15

20

25

30

35

100 200 300 400
Displacement (cu.in.)

M
ile

s
pe

r
G

al
lo

n

Cylinders

4

6

8

Engine Displacement vs. MPG by Cylinder Count

Here, the color aesthetic maps the number of cylinders (cyl) to different colors, allowing you
to distinguish groups within the data.

Faceting for Multi-Panel Plots

131

Faceting splits your data into subsets and displays them in separate panels:

ggplot(data = mtcars, aes(x = disp, y = mpg)) +
geom_point() +
facet_wrap(~gear) +
labs(

title = "Engine Displacement vs. MPG Faceted by Gear Count",
x = "Displacement (cu.in.)",
y = "Miles per Gallon"

) +
theme_light()

3 4 5

100 200 300 400 100 200 300 400 100 200 300 400

10

15

20

25

30

35

Displacement (cu.in.)

M
ile

s
pe

r
G

al
lo

n

Engine Displacement vs. MPG Faceted by Gear Count

This code creates a scatter plot for each unique value of gear, allowing for easy comparison
across groups.

Incorporating Statistical Transformations

You can add statistical summaries or models to your plots:

ggplot(data = mtcars, aes(x = disp, y = mpg)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, color = "blue") +
labs(

title = "Linear Regression of MPG on Displacement",
x = "Displacement (cu.in.)",

132

y = "Miles per Gallon"
) +
theme_bw()

#> `geom_smooth()` using formula = 'y ~ x'

10

15

20

25

30

35

100 200 300 400
Displacement (cu.in.)

M
ile

s
pe

r
G

al
lo

n

Linear Regression of MPG on Displacement

The geom_smooth() function adds a linear regression line to the scatter plot, providing insight
into the trend.

Creating a Histogram with geom_histogram()

Suppose you want to a histogram of the Sepal.Length in the iris dataset:

You can also start with the data frame and then pipe with ggplot

iris |> ggplot(aes(x = Sepal.Length)) +
geom_histogram(binwidth = 0.5, fill = "steelblue", color = "black") + # binwidth determines the width of the bins
labs(

title = "Distribution of Sepal Lengths",
x = "Sepal Length (cm)",
y = "Frequency"

) +
theme_minimal()

133

0

10

20

30

5 6 7 8
Sepal Length (cm)

F
re

qu
en

cy
Distribution of Sepal Lengths

In this example:

• Data: iris

• Aesthetics: x = Sepal.Length

• Geometric Object: geom_histogram() creates a histogram with binwidth = 0.5,
where each bar represents the frequency of Sepal.Length values. The fill parameter
sets the bar color to “steelblue” and color outlines each bar in black.

• Labels: labs() adds a title and axis labels.

• Theme: theme_minimal() provides a clean, minimalist background.

Creating a Boxplot with geom_boxplot()

Create a boxplot of sepal length by species:

iris |> ggplot(aes(x = Species, y = Sepal.Length, fill = Species)) +
geom_boxplot() +
labs(

title = "Sepal Length by Species",
x = "Species",
y = "Sepal Length (cm)"

134

) +
theme_bw()

5

6

7

8

setosa versicolor virginica
Species

S
ep

al
 L

en
gt

h
(c

m
)

Species

setosa

versicolor

virginica

Sepal Length by Species

In this example:

• Data: iris

• Aesthetics: x = Species, y = Sepal.Length, fill = Species

• Geometric Object: geom_boxplot() creates a box plot to visualize the distribution
of Sepal.Length for each Species. The fill parameter colors the boxes based on the
species.

• Labels: labs() adds a title and axis labels.

• Theme: theme_bw() applies a theme with a white background and black grid lines,
giving the chart a classic look.

Creating a Bar Chart with geom_bar()

Visualize the count of cars by the number of carburetors:

mtcars <- mtcars |> mutate(carb = as.factor(carb))

mtcars |> ggplot(aes(x = carb, fill = carb)) +

135

geom_bar(show.legend = FALSE) +
labs(

title = "Bar Chart of 'carb' in mtcars",
x = "Number of Carburetors",
y = "Number of Cars"

) +
theme_minimal()

0.0

2.5

5.0

7.5

10.0

1 2 3 4 6 8
Number of Carburetors

N
um

be
r

of
 C

ar
s

Bar Chart of 'carb' in mtcars

In this example:

• Data: mtcars, with the carb column converted to a factor using mutate().

• Aesthetics: x = carb, fill = carb to color the bars based on the different levels of
carb.

• Geometric Object: geom_bar() creates a bar chart showing the count of cars for each
value of carb. The show.legend = FALSE parameter hides the legend.

• Labels: labs() adds a title and axis labels.

• Theme: theme_minimal() provides a clean, minimalist background.

136

Creating a Line Chart with geom_line

Using the economics dataset in ggplot2 package, create a line plot to visualize the trend of
unemployment over time. Specifically, plot date on the x-axis and unemploy (the number of
unemployed individuals) on the y-axis. Color the line blue and apply the theme_bw() theme
to give the plot a clean, professional look.

economics %>%
ggplot(aes(x = date, y = unemploy)) +
geom_line(color = "blue") +
labs(

title = "Unemployment Trends Over Time",
x = "Date",
y = "Number of Unemployed Individuals"

) +
theme_bw()

4000

8000

12000

1970 1980 1990 2000 2010
Date

N
um

be
r

of
 U

ne
m

pl
oy

ed
 In

di
vi

du
al

s

Unemployment Trends Over Time

In this example:

• Data: US economic time series data

• Aesthetics: x = date, y = unemploy plots unemployment over time.

• Geometric Object: geom_line(color = "blue") creates a line chart to show the
trend of unemployment, with the line colored blue.

137

• Labels: labs() adds a title and axis labels, specifying “Unemployment Trends Over
Time” for the title, “Date” for the x-axis, and “Number of Unemployed Individuals” for
the y-axis.

• Theme: theme_bw() applies a black-and-white theme for a clear and classic look.

Creating an Area Chart with geom_area

Using the same economics data, create an area plot that displays the number of unemployed
individuals over time.

economics |> ggplot(aes(x = date, y = unemploy)) +
geom_area(fill = "lightblue") +
theme_bw()

0

5000

10000

15000

1970 1980 1990 2000 2010
date

un
em

pl
oy

In this example:

• Data: US economic time series data

• Aesthetics: x = date, y = unemploy to set the x-axis as the date and the y-axis as
the unemployment count.

• Geometric Object: geom_area() creates an area chart showing the trend of unem-
ployment over time. The fill = "light-blue" parameter colors the area with a light
blue shade.

138

• Labels: None are explicitly added here, so the default axis labels (date and unemploy)
will be used.

• Theme: theme_bw() applies a theme with a white background and black grid lines,
giving the chart a classic look.

5.4.7 Saving your plots

Once you’ve created a meaningful and visually appealing plot in R using ggplot2, you might
want to save it as an image file to include in reports, presentations, or share with others. The
ggsave() function is a convenient tool that allows you to export your plots to a variety of
formats such as PNG, PDF, JPEG, and more.

Let’s walk through the process of creating a plot and then saving it using ggsave().

diamonds |> ggplot(aes(x = cut, y = carat, fill = color)) +
geom_col(position = position_dodge()) +
labs(x = "Quality of the cut", y = "Weight of the diamond") +
ggthemes::theme_economist()

0

1

2

3

4

5

Fair Good Very Good Premium Ideal
Quality of the cut

W
ei

gh
t o

f t
he

 d
ia

m
on

d

color
D

E

F

G

H

I

J

ggsave(filename = "diamonds-plot.png")

#> Saving 5.5 x 3.5 in image

139

Explanation:

• filename = "diamonds-plot": Specifies the name of the output file and the format (in
this case, PNG).

• By default, ggsave() saves the most recently created plot.

• The plot is saved in your current working directory.

Customizing the Output

For reproducible results and to ensure your plots have consistent dimensions, it’s a good
practice to specify the size and resolution when saving your plots.

ggsave(
filename = "diamonds-plot.png",
width = 8, # Width in inches
height = 6, # Height in inches
units = "in", # Units for width and height (can be "in", "cm", or "mm")
dpi = 300 # Resolution in dots per inch

)

Explanation:

• width and height: Set the size of the image.

• units: Specify the units of measurement.

• dpi: Controls the resolution; 300 dpi is standard for high-quality images.

Note

The ggsave() function has many additional arguments that allow for fine-tuned control
over the saved image. To explore all the options, you can refer to the official documenta-
tion:

?ggsave

140

5.4.8 Exercise 5.2: Data Analysis and Visualization with Medical Insurance Data

For this exercise, you will use Rstudio Project, call it Experiment 5.2 and medical insurance
data. These questions and tasks will give you hands-on experience with the key functionalities
of dplyr and ggplot2, reinforcing your learning and understanding of both data manipulation
and visualization in R.

1. Data Manipulation using dplyr:

a. Download medical insurance data

b. Import the data into R.

c. How many individuals have purchased medical insurance? Use dplyr to filter and
count.

d. What is the average estimated salary for males and females? Use group_by() and
summarise().

e. How many individuals in the age group 20-30 have not purchased medical insurance?
Use filter().

f. Which age group has the highest number of non-purchasers? Use group_by() and
summarise().

g. For each gender, find the mean, median, and maximum estimated salary. Use
group_by(), summarise and appropriate statistical functions.

2. Data Visualization using ggplot2:

a. Create a histogram of the ages of the individuals. Use geom_histogram().

b. Plot a bar chart that shows the number of purchasers and non-purchasers. Use
geom_bar().

c. Create a boxplot to visualize the distribution of estimated salaries for males and
females. Use geom_boxplot().

d. Generate a scatter plot of age versus estimated salary. Color the points by their
“Purchased” status. This will give insights into the relationship between age, salary,
and the decision to purchase insurance. Use geom_point().

e. Overlay a density plot on the scatter plot created in (d) to better understand the
concentration of data points. Use geom_density_2d().

3. Combining dplyr and ggplot2:

a. Filter the data to only include those who haven’t purchased insurance and then
create a histogram of their ages.

141

https://docs.google.com/spreadsheets/d/1Qo2KZeow-0CLGpIThciUbjOgQMRMu0Pt/edit?usp=drive_link

b. Group the data by gender and then plot the average estimated salary for each
gender using a bar chart.

c. For each age, calculate the percentage of individuals who have purchased insurance
and then plot this as a line graph against age.

5.5 Summary

In Lab 5, you have acquired essential skills in data analysis and visualization using R:

• The Pipe Operator |>: You learned how to use the pipe operator from the magrittr
package to streamline your code. This operator allows you to chain multiple functions
together, making your code more readable and intuitive by focusing on the flow of data
through a sequence of operations.

• Data Manipulation with dplyr: You explored the core functions of the dplyr
package—such as select(), filter(), mutate(), arrange(), and summarise()—to
efficiently manipulate and transform datasets. These functions enable you to select
specific columns, filter rows based on conditions, create new variables, sort data, and
compute summary statistics.

• Data Visualization with ggplot2: You discovered how to create a variety of visual-
izations using the ggplot2 package, which is based on the Grammar of Graphics. You
practiced generating scatter plots, histograms, boxplots, and bar charts to explore and
present data visually, enhancing your ability to identify patterns and insights.

• Integrating Data Analysis and Visualization: You learned how to combine data
manipulation and visualization techniques to create a seamless analytical workflow. By
preparing data with dplyr and visualizing it with ggplot2, you improved your capacity
to tell compelling stories with data.

These advanced skills are crucial for any data analyst or scientist, as they enable you to
work effectively with real-world datasets, extract meaningful insights, and communicate your
findings through clear and impactful visualizations. Congratulations on elevating your R
programming proficiency and advancing your expertise in data analysis and visualization!

142

6 Mastering R through Use Case Projects

R, like any programming language, is best understood not just through theory but through
application. Once learners grasp the foundational elements of R, it’s crucial to transition into
real-world projects that allow for deeper understanding and retention of the material. This is
where use case projects come in.

6.1 Why Use Case Projects?

1. Application of Theory: Practical projects allow learners to apply the theoretical
knowledge they’ve acquired. This transition from theory to application often solidifies
understanding.

2. Problem-Solving Skills: Real-world projects present unforeseen challenges. By work-
ing through these, learners enhance their problem-solving skills and become adept at
troubleshooting.

3. Comprehensive Understanding: Use case projects often require the integration of
various R functions and techniques. This holistic approach ensures a deeper and more
comprehensive grasp of R.

4. Confidence Building: Successfully completing a use-case project boosts confidence,
giving students the assurance that they can tackle real-world data problems using R.

5. Portfolio Building: Projects can be added to a student’s portfolio, showcasing their
skills to potential employers or collaborators.

6.2 Sample Use Case Project: Televison Client Analysis

6.2.1 Background

A small television company is interested in understanding the factors that impact viewers’
ratings of the company. Data has been collected from viewers who rated how highly they
regard the television company (regard) and provided other related measures.

143

6.2.2 Data Structure

Variables in the dataset:

• regard: Viewer rating of the television company (higher ratings indicate higher regard).

• gender: Gender the viewer identifies with.

• views: Number of views.

• online: Number of times accessed bonus online material.

• library: Number of times browsed the online library.

• Show1 to Show4: Scores for four different shows.

Download the dataset here.

6.2.3 Tasks

1. Data Import and Cleaning

• Import the dataset into R.

• Perform data cleaning: handle missing values, detect outliers, and ensure correct
data types.

2. Exploratory Data Analysis (EDA)

• Produce descriptive statistics and exploratory graphics for regard, focusing on
patterns by gender.

• Analyze scores for each of the four shows, highlighting differences by gender.

3. Derived Variables

• Create a new variable mean_show, calculated as the mean of Show1 to Show4.

4. Correlation Analysis

• Test for a statistically significant linear correlation between mean_show and regard.

5. Recommendation

• Write a short report (around 100 words) outlining your findings.

• Include insights on regard, relevance to the client, and any limitations of your
analysis.

144

https://drive.google.com/file/d/1c9gD1fVj2XHgpCoVFKMECnT2DTDBndO_/view?usp=drive_link

6.3 Exercise 6.1: Analyzing a Rape Survey for the Federal
Government of Nigeria

6.3.1 Project Overview

You have been consulted by the Federal Government of Nigeria to analyze a recent rape survey.
As a data analyst with no specific instructions, your task is to use your analytical skills to
uncover insights that will be valuable for the government.

6.3.2 Dataset

Download the dataset here.

6.3.3 Your Task

• Data Analysis: Perform a comprehensive analysis of the survey data.
• Visualization: Create visualizations that effectively communicate your findings.
• Insights: Identify key issues, trends, and patterns that are important for the government

to understand.
• Recommendations: Provide suggestions or action items based on your analysis.

6.3.4 Presentation

Prepare to present your data product, explaining:

• Functionality: How you analyzed the data and what tools you used.
• Design Choices: Why you chose specific methods or visualizations.
• Findings: The key insights from your analysis.
• Future Improvements: How the analysis could be expanded or refined.

Wrap-Up

By engaging in these exercises and projects, you’re not just learning R—you’re master-
ing it. The key to proficiency is consistent practice and application. These real-world
scenarios will challenge you, enhance your problem-solving skills, and prepare you for
future data analysis tasks. Keep exploring, stay curious, and continue to build upon the
foundation you’ve established.

145

https://docs.google.com/spreadsheets/d/1ihgUWHSpPnpqsscitCLocz3LnI-7NoL6/edit?usp=drive_link&ouid=106220036497399452279&rtpof=true&sd=true

A Downloading and Preparing the Data

To fully engage with the exercises and examples in this book, you’ll need to download the
datasets provided. The data is organized in a folder named r-data, which contains all the
files we’ll use throughout the chapters.

A.1 Downloading the Data

1. Access the Data Folder

Visit the following link to access the r-data folder on Google Drive:
Google Drive - r-data Folder

2. Download the r-data Folder

• Once you’re on the Google Drive page, you should see the r-data folder listed.
• Right-click on the r-data folder and select Download.
• Google Drive will compress the folder into a ZIP file before downloading it to your

computer.

3. Unzip the Folder

• After the download is complete, locate the ZIP file on your computer (usually in
your Downloads folder).

• Extract the contents of the ZIP file:
– Windows: Right-click the ZIP file and select Extract All, then follow the

prompts.
– macOS: Double-click the ZIP file to extract it.
– Linux: Right-click and select Extract Here, or use the command line unzip

filename.zip.

4. Verify the Contents

• Open the extracted r-data folder to ensure all files are present.
• You should see various datasets in formats like CSV, Excel, and others, which we’ll

use in different labs.

146

https://drive.google.com/drive/u/1/folders/1KwoBPCq1I2tWi-OzbDZaDKXbukZI_aPw

A.2 Setting Up Your Working Directory

To keep your work organized and ensure consistency across exercises, we’ll create a dedicated
RStudio Project for each lab or exercise that uses data from the r-data folder. This approach
helps manage your files efficiently and ensures that your working directory is correctly set for
each task.

A.2.1 Creating a New RStudio Project for Each Exercise

1. Identify the Lab or Exercise

• Determine which lab or exercise you’re working on (e.g., Lab 2, Exercise 4.1).

2. Create a Directory for the Project

• On your computer, create a new folder with a meaningful name for the lab or
exercise, such as Lab2_Project or Exercise4_1_Project.

3. Copy Necessary Data Files

• From the extracted r-data folder, copy the specific data files needed for the exercise
into your new project folder.

• Alternatively, you can copy the entire r-data folder into your project directory if
multiple datasets are required.

4. Create a New RStudio Project

• Open RStudio.

• Go to File > New Project.

• Choose Existing Directory.

• Browse to the directory you just created for the lab or exercise.

• Select the folder and click Create Project.

5. Organize Your Project Files

• Within your project directory, consider creating subfolders such as data, scripts,
and output to further organize your work.

– Place your data files in the data folder.

– Save your R scripts in the scripts folder.

– Direct any output files (like graphs or reports) to the output folder.

147

6. Working Within the Project

• When you open the RStudio Project, your working directory is automatically set
to the project’s root directory.

• When reading or writing files, use relative paths starting from the project directory
to ensure your code works on any system where the project folder is set as the
working directory.

Example of reading a CSV file from the data folder
data <- read_csv("r-data/your-dataset.csv")

Note

Make sure to use forward slashes / in the file path, even on Windows.

A.2.2 Benefits of Using Separate Projects for Each Exercise

• Organization: Keeps your work for each lab or exercise neatly contained, preventing
files from different tasks from mixing.

• Reproducibility: By maintaining all necessary files within each project, you make it
easier to revisit or share your work without missing dependencies.

• Clarity: Helps you focus on the specific objectives of each exercise without distractions
from other projects.

A.3 Data Usage and Ethics

The datasets and link provided are safe and intended for educational use in conjunction with
this book to help you practice and apply the concepts covered. Please use the data responsibly
and refrain from using it for any unauthorized purposes.

• Privacy: Be mindful that while the datasets are fictional or anonymized, they may
represent sensitive topics. Handle all data with respect and confidentiality.

• Attribution: If you use the datasets in any presentations or projects outside of this
book’s exercises, please acknowledge the source appropriately.

148

A.4 Getting Help

If you encounter any issues downloading or accessing the data:

• Check Your Internet Connection: Ensure you have a stable connection when down-
loading the data.

• Try a Different Browser: Sometimes switching browsers can resolve download issues.

By setting up the data as described, you’ll be ready to dive into the hands-on labs and fully
engage with the practical exercises. Having the data organized and accessible will streamline
your workflow and enhance your learning experience.

Happy analyzing!

149

	Preface
	Getting Started with R
	Introduction
	Why learning R programming?
	Companies Using R for Analytics
	Learning Curve
	Installing R and RStudio

	Experiment 1.1: RStudio Interface and Basic Calculations
	The Four Panes of RStudio
	Basic Calculations in R Programming
	Comments in R
	Comparison Operators
	Exercise 1.1.1

	Experiment 1.2: Atomic Data Type and Variable Assignment in R
	Variable Assignment
	Rules for Naming Variables
	Exercise 1.2.1: Acceptable vs. Unacceptable Variable Names
	Data Type Conversions
	Exercise 1.2.2

	Experiment 1.3: Conditional Statements in R
	The if Statement
	The else Statement
	The else if Statement
	The switch function
	Exercise 1.3.1
	Exercise 1.3.2: Menu Selection Using switch()

	Additional R Learning Resources
	Summary

	Understanding Data Structures
	Introduction
	Experiment 2.1: Vectors
	Creating a Vector
	Factor vectors
	Length of a vector
	Arithmetic Operations with Vectors
	Vector selection
	Exercise 2.1.1: Vector Selection

	Experiment 2.2: Matrices
	Creating Matrices
	Matrices slicing
	Arithmetic Operation in Matrices
	Exercise 2.2.1: Matrix Transpose
	Exercise 2.2.2: Matrix Inverse Multiplication

	Experiment 2.3: Data frame
	Creating a Data Frame
	Exploring Data Frames
	Explore the data
	Built-in Datasets
	Subsetting Data Frames
	Exercise 2.3.1: Subsetting a Dataframe

	Experiment 2.4: Lists
	Creating a List
	Accessing List Elements

	Summary

	Writing Custom Functions
	Introduction
	Types of Functions
	Why Write Your Own Function?
	When Should You Write a Function?

	Experiment 3.1: Creating a Function
	Calling a User-defined Function in R
	Creating a Function to Square a Number
	Checking for Missing Values
	Data Frame Manipulation Using switch()
	Exercise 3.1.1: Temperature Conversion
	Exercise 3.1.2: Pythagoras Theorem
	Exercise 3.1.3: Staff Data Manipulation Using switch()

	Experiment 3.2: Understanding Variable Scope Within Functions
	Local vs. Global Variables
	How Variable Scope Works in R
	Variable Shadowing

	Summary

	Managing Packages & Workflows
	Introduction
	Compiling R Packages from Source
	Experiment 4.1: Installing and Loading Packages
	Installing Packages from CRAN
	Installing Packages from External Repositories
	Loading Installed Packages
	Using Functions from a Package

	Experiment 4.2: Data Analysis Reproducibility with R and RStudio Projects
	Where Does Your Analysis Live?
	Paths and Directories
	RStudio Projects

	Experiment 4.3: Importing and exporting data in R
	Packages for Reading and Writing Data in R
	Working with Projects in RStudio

	Experiment 4.4: Dealing with Missing Data in R
	Recognizing Missing Values
	Summarizing Missing Data
	Handling Missing Values
	Exercise 4.1: Medical Insurance Data

	Summary

	Data Analysis and Visualization
	Introduction
	Experiment 5.1: The Pipe Operator <%>
	How Does the Pipe Operator Work?

	Experiment 5.2: Data Manipulation with dplyr
	Why Use dplyr?
	Getting Started
	Core dplyr Verbs
	Using Pipes with dplyr functions
	Example Datasets
	Example: using select()
	Example: Using mutate()
	Example: Using filter()
	Example: Using arrange()
	Example: Using summarise()
	Example: Using group_by() and summarise()
	Example: Using rename()
	Exercise 5.1: Analyzing the Penguins Dataset

	Experiment 5.3: Data Visualization
	Importance of Data Visualization
	Choosing the Right Visualization
	Types of Data Visualization Analysis
	Common Data Visualization Techniques
	Data Visualization with ggplot2
	Building Plots with ggplot2
	Saving your plots
	Customizing the Output
	Exercise 5.2: Data Analysis and Visualization with Medical Insurance Data

	Summary

	Mastering R through Use Case Projects
	Why Use Case Projects?
	Sample Use Case Project: Televison Client Analysis
	Background
	Data Structure
	Tasks

	Exercise 6.1: Analyzing a Rape Survey for the Federal Government of Nigeria
	Project Overview
	Dataset
	Your Task
	Presentation

	Appendices
	Downloading and Preparing the Data
	Downloading the Data
	Setting Up Your Working Directory
	Creating a New RStudio Project for Each Exercise
	Benefits of Using Separate Projects for Each Exercise

	Data Usage and Ethics
	Getting Help

