
Statistics and Data Analysis with R: A
Lab-Based Approach

Ezekiel Ogundepo

Table of contents

Preface 3

I Your R Journey 5

1 Getting Started with R 6
1.1 Introduction . 6
1.2 Learning Objectives . 6
1.3 Prerequisites . 7
1.4 Why Learn R Programming? . 7

1.4.1 A Brief History of R’s Development . 7
1.4.2 Key Reasons to Learn R . 8
1.4.3 Companies Using R for Analytics . 8
1.4.4 A Steep Yet Rewarding Learning Curve 9

1.5 Experiment 1.1: Installing R and RStudio . 10
1.5.1 Installing R . 10
1.5.2 Installing RStudio . 10
1.5.3 Practice Quiz 1.1 . 11

1.6 Experiment 1.2: Exploring the RStudio Interface 12
1.6.1 The Four Panes of RStudio . 12
1.6.2 Performing Basic Calculations in R . 14
1.6.3 Comments in R . 17
1.6.4 Comparison Operators . 17
1.6.5 Practice Quiz 1.2 . 18
1.6.6 Exercise 1.2.1: Basic Calculations . 20

1.7 Experiment 1.3: Understanding Atomic Data Types and Variable Assignment . 20
1.7.1 Atomic Data Types . 21
1.7.2 Variable Assignment . 22
1.7.3 Rules for Naming Variables . 23
1.7.4 Exercise 1.3.1: A Quick Hands-On . 24
1.7.5 Reflective Exercise 1.3.2: Best Practices and Pitfalls in Variable Naming 24
1.7.6 Data Type Conversions . 25
1.7.7 Practice Quiz 1.3 . 27
1.7.8 Exercise 1.3.3: Variable Assignment and Data Types 29

2

1.8 Experiment 1.4: Conditional Statements in R 30
1.8.1 The if Statement . 30
1.8.2 The else Statement . 31
1.8.3 The else if Statement . 31
1.8.4 The ifelse() Function . 33
1.8.5 The switch Function . 34
1.8.6 Practice Quiz 1.4 . 37
1.8.7 Exercise 1.4.1: Conditional Statements 39
1.8.8 Exercise 1.4.2: Menu Selection Using switch() 40
1.8.9 Exercise 1.4.3: Mini-Project - Basic Calculator in R 41

1.9 Further Reading . 42
1.10 Reflective Summary . 42

2 Understanding Data Structures 44
2.1 Introduction . 44
2.2 Learning Objectives . 44
2.3 Prerequisites . 45
2.4 Exploring Data Structures in R . 45
2.5 Experiment 2.1: Vector . 45

2.5.1 Creating a Vector . 46
2.5.2 Checking the Type of a Vector . 47
2.5.3 Length of a Vector . 47
2.5.4 Advanced Vector Creation . 48
2.5.5 Vector Operations . 54
2.5.6 Vector selection . 56
2.5.7 Reflection Question 2.1.1 . 57
2.5.8 Exercise 2.1.1: Vector Selection . 60
2.5.9 Factor Vectors . 60
2.5.10 Reflection Question 2.1.2 . 68
2.5.11 Practice Quiz 2.1 . 68
2.5.12 Exercise 2.1.2: Vector and Factor Manipulation 71

2.6 Experiment 2.2: Matrices . 72
2.6.1 Creating Matrices . 72
2.6.2 Matrices slicing . 73
2.6.3 Arithmetic Operation in Matrices . 74
2.6.4 Exercise 2.2.1: Matrix Transpose . 75
2.6.5 Exercise 2.2.2: Matrix Inverse Multiplication 75
2.6.6 Real-World Data Scenario: Sales Data Matrix 76
2.6.7 Reflection Question 2.2.1 . 78
2.6.8 Practice Quiz 2.2 . 78
2.6.9 Exercise 2.2.3: Matrix Operations . 80

2.7 Experiment 2.3: Data frame . 80
2.7.1 Creating a Data Frame . 80

3

2.7.2 Exploring Data Frames . 82
2.7.3 Built-in Datasets . 85
2.7.4 Subsetting Data Frames . 87
2.7.5 Practice Quiz 2.3 . 89
2.7.6 Exercise 2.3.1: Subsetting a Dataframe 91
2.7.7 Exercise 2.3.2: Data Frame Manipulation 91

2.8 Experiment 2.4: Lists . 92
2.8.1 Creating a List . 92
2.8.2 Accessing List Elements . 94
2.8.3 Practice Quiz 2.4 . 95
2.8.4 Exercise 2.4.1: Working with Lists . 97

2.9 Experiment 2.5: Arrays . 97
2.9.1 Creating Arrays . 98
2.9.2 Reflection . 100

2.10 General Practice Quiz 2 . 100
2.11 Reflective Summary . 104

3 Writing Custom Function 106
3.1 Introduction . 106
3.2 Learning Objectives . 106
3.3 Prerequisites . 107
3.4 Experiment 3.1: Understanding Functions in R 107

3.4.1 Types of Functions . 108
3.4.2 Why Write Your Own Function? . 108
3.4.3 When Should You Write a Function? . 108
3.4.4 Creating Custom Function . 109
3.4.5 Example 1: Squaring a Number . 109
3.4.6 Example 2: Checking for Missing Values 110

3.5 Experiment 3.2: Advanced Function Examples 111
3.5.1 Example 3: Calculating the Statistical Mode 111
3.5.2 Example 4: Data Frame Operation Using switch() 113
3.5.3 Exercise 3.1.1: Temperature Conversion 118
3.5.4 Exercise 3.1.2: Pythagoras Theorem . 119
3.5.5 Exercise 3.1.3: Staff Data Manipulation Using switch() 120

3.6 Experiment 3.3: Understanding Variable Scope 122
3.6.1 Local vs. Global Variables . 122
3.6.2 How Variable Scope Works in R . 123
3.6.3 Variable Shadowing . 124
3.6.4 Practice Quiz 3.1 . 125

3.7 Summary . 126

4 Managing Packages and Workflows 127
4.1 Introduction . 127

4

4.2 Learning Objectives . 127
4.3 Prerequisites . 128
4.4 Understanding Packages and Libraries in R . 128
4.5 Compiling R Packages from Source . 128
4.6 Experiment 4.1: Installing and Loading Packages 129

4.6.1 Installing Packages from CRAN . 129
4.6.2 Installing Packages from External Repositories 130
4.6.3 Loading Packages . 130
4.6.4 Using Functions from a Package . 132
4.6.5 Practice Quiz 4.1 . 134

4.7 Experiment 4.2: Ensuring Reproducibility with R and RStudio Projects 136
4.7.1 Working Directory and Paths . 136
4.7.2 RStudio Projects . 137
4.7.3 How RStudio Projects Organize Your Work 137
4.7.4 Setting Up Your RStudio Project . 139
4.7.5 Practice Quiz 4.2 . 142

4.8 Experiment 4.3: Importing and Exporting Data in R 143
4.8.1 Flat Files . 144
4.8.2 Spreadsheets . 146
4.8.3 Labelled Data . 153
4.8.4 Web Scraping . 158
4.8.5 Bringing It All Together . 163
4.8.6 Practice Quiz 4.3 . 165
4.8.7 Exercise 4.3.1: Medical Insurance Data 167

4.9 Reflective Summary . 168

II Data Analytics 169

5 Data Transformation 170
5.1 Introduction . 170
5.2 Learning Objectives . 170
5.3 Prerequisites . 171
5.4 What is Data Transformation? . 171
5.5 Real-World Scenario: Preparing Data for Analysis 172
5.6 Experiment 5.1: The Pipe Operator |> . 172

5.6.1 Practice Quiz 5.1 . 175
5.7 Experiment 5.2: Data Manipulation with dplyr 177

5.7.1 Working with the dplyr Verbs . 179
5.7.2 select() – Picking Specific Columns 182
5.7.3 mutate() – Creating or Modifying Columns 187
5.7.4 filter() – Selecting Rows Based on Conditions 199
5.7.5 arrange() – Reordering Rows . 212

5

5.7.6 slice() – Selecting Rows by Position 214
5.7.7 summarise() – Aggregating Data . 216
5.7.8 group_by() – Working with Groups . 217
5.7.9 Combining All the Verbs: . 219
5.7.10 Exercise 5.2.1: Top 5 Carnivorous Animals 220
5.7.11 Exploring More Functions in dplyr . 221
5.7.12 Practice Quiz 5.2 . 229
5.7.13 Exercise 5.2.2: Analysing the Penguins Dataset 233
5.7.14 Exercise 5.2.3: Data Analyst Candidate Assessment 234

5.8 Experiment 5.3: Dealing with Missing Data . 236
5.8.1 Recognising Missing Values . 236
5.8.2 Summarising Missing Data . 238
5.8.3 Strategies for Dealing with Missing Data 240
5.8.4 Practice Quiz 5.3 . 245
5.8.5 Exercise 5.3.1: Handling Missing Data in the Television Company Dataset248

5.9 Reflective Summary . 249

6 Tidy Data and Joins 251
6.1 Introduction . 251
6.2 Learning Objectives . 251
6.3 Prerequisites . 252
6.4 The Principles of Tidy Data . 252
6.5 Experiment 6.1: Reshaping Data with tidyr 253

6.5.1 Reshaping Data from Wide to Long Using pivot_longer() 253
6.5.2 Reshaping Data from Long to Wide Using pivot_wider() 256
6.5.3 Practice Quiz 6.1 . 257
6.5.4 Exercise 6.1.1: Tidying the Pew Religion and Income Survey Data . . . 260

6.6 Experiment 6.2: Splitting and Combining Columns 261
6.6.1 Splitting Columns with separate() . 262
6.6.2 Combining Columns with unite() . 264
6.6.3 Practice Quiz 6.2 . 266
6.6.4 Exercise 6.2.1: Transforming the Television Company Dataset 269

6.7 Experiment 6.3: Combining Datasets with Joins 270
6.7.1 The Role of Keys . 270
6.7.2 Types of Joins . 271
6.7.3 Joins with Different Key Names . 275
6.7.4 Practice Quiz 6.3 . 277
6.7.5 Exercise 6.3.1: Relational Analysis with the NYC Flights 2013 Dataset 279

6.8 Reflective Summary . 281

7 Data Visualisation 282
7.1 Introduction . 282
7.2 Learning Objectives . 282

6

7.3 What is Data Visualization? . 283
7.4 Importance of Data Visualisation . 284
7.5 Choosing the Right Visualization . 285
7.6 Types of Data Visualisation Analysis . 285
7.7 Common Data Visualization Techniques . 287

7.7.1 Bar Chart . 287
7.7.2 Histogram . 288
7.7.3 Circular charts . 289
7.7.4 Scatter Plot . 290
7.7.5 Box and Whisker Plot . 291
7.7.6 Line Chart . 292
7.7.7 Areas chart . 293

7.8 Experiment 7.1: Data Visualization with ggplot2 294
7.8.1 Understanding the Grammar of Graphics 295
7.8.2 Building Plots with ggplot2 . 297
7.8.3 Example Datasets . 297
7.8.4 Creating a Scatter Plot . 300
7.8.5 Creating Boxplots . 304
7.8.6 Creating a Histogram . 308
7.8.7 Creating Frequency Polygons . 310
7.8.8 Creating Bar Charts . 312
7.8.9 Creating a Line Chart . 324
7.8.10 Creating an Area Chart . 326
7.8.11 Saving Your Plots . 328
7.8.12 Practice Quiz 7.1 . 330
7.8.13 Exercise 7.1.1: Data Analysis and Visualization with Medical Insurance

Data . 333
7.8.14 Exercise 7.1.2: Reproducing the Smoking, Gender, and Lifespan Chart . 334

7.9 Experiment 7.2: Data Visualisation Using Base R Graphics 336
7.9.1 Advantages of Using Base R . 336
7.9.2 Core Plotting Functions . 337
7.9.3 Customising Plots in Base R . 337
7.9.4 Creating a Scatter Plot with Base R . 339
7.9.5 Creating Boxplots in Base R . 341
7.9.6 Creating a Histogram in Base R . 343
7.9.7 Creating Bar Charts in Base R . 345
7.9.8 Creating Pie and Doughnut Charts in Base R 349
7.9.9 Creating Line and Area Charts . 351
7.9.10 Saving Plots . 353
7.9.11 Practice Quiz 7.2 . 354

7.10 Reflective Summary . 357

7

III Statistical Thinking 358

8 Statistical Concept 359
8.1 Introduction . 359
8.2 Learning Objectives . 359
8.3 What is Data? . 360

8.3.1 Why is Data Important? . 361
8.3.2 Types of Data . 361
8.3.3 Sources of data . 364
8.3.4 Practice Quiz 8.0 . 365

8.4 Experiment 8.1: Statistical Thinking . 368
8.4.1 Population Data versus Sample Data . 368
8.4.2 Parameters and Statistics . 369
8.4.3 Descriptive Statistics . 370
8.4.4 Practice Quiz 8.1 . 382
8.4.5 Exercise 8.1.2: Professor Francisca - A Generous Giver 385

8.5 Experiment 8.2: Five Number Summary and Boxplots 386
8.5.1 Practice Quiz 8.2 . 391
8.5.2 Exercise 8.2.1 . 394

8.6 Experiment 8.3: Scales of Measurement . 395
8.6.1 Nominal Scale . 395
8.6.2 Ordinal Scale . 396
8.6.3 Interval Scale . 397
8.6.4 Ratio Scale . 398
8.6.5 Practice Quiz 8.3 . 399
8.6.6 Exercise 8.3.1: Identify the Scale . 402

8.7 Reflective Summary . 402

9 Sampling Techniques 404
9.1 Introduction . 404
9.2 Learning Objectives . 405
9.3 Why Do We Sample? . 405
9.4 Sampling Terminology . 406
9.5 Understanding Probability and Non-Probability Sampling 406
9.6 Experiment 9.1: Probability Sampling Techniques 408

9.6.1 Simple Random Sampling (SRS) . 408
9.6.2 Exercise 9.1.1: Simple Random Sampling with the Penguins Dataset . . 409
9.6.3 Stratified Sampling . 410
9.6.4 Exercise 9.1.2: Stratified Sampling with the Diamonds Dataset 412
9.6.5 Cluster Sampling . 413
9.6.6 Exercise 9.1.3: Cluster Sampling with a Simulated Dataset 415
9.6.7 Systematic Sampling . 416
9.6.8 Exercise 9.1.4: Systematic Sampling on a Simple List 417

8

9.6.9 Practice Quiz 9.1: Probability Sampling 418
9.7 Experiment 9.2: Non-Probability Sampling Techniques 421

9.7.1 Convenience Sampling . 421
9.7.2 Snowball Sampling . 423
9.7.3 Judgmental (Purposive) Sampling . 425
9.7.4 Quota Sampling . 427
9.7.5 Practice Quiz 9.2: Non-Probability Sampling 429
9.7.6 Choosing the Right Sampling Technique 431

9.8 Reproducibility and Ethics . 432

10 Data Science Concept 433
10.1 Introduction . 433
10.2 Learning Objectives . 433
10.3 Prerequisites . 434
10.4 Real-World Scenario: Data Science in Action 434
10.5 Understanding Data Science . 435
10.6 Data Science Use Cases . 436
10.7 Who is a Data Scientist? . 437
10.8 Skills Required for Data Science . 437
10.9 Becoming a Data Scientist . 438
10.10Programming Languages for Data Science . 438
10.11The Data Science Lifecycle . 439

10.11.1 Import . 440
10.11.2Tidy . 440
10.11.3Transform . 441
10.11.4Visualise . 441
10.11.5Models . 441
10.11.6Communicate . 441

10.12Reproducibility and Ethical Considerations . 441
10.12.1Practice Quiz 10.1 . 442
10.12.2Exercise 10.1: Identifying Data Science Roles 444
10.12.3Exercise 10.2: Mapping Lab Skills onto the Data Science Lifecycle . . . 445
10.12.4Exercise 10.3: Designing a Mini Project 445

10.13Reflective Summary . 445

11 Use Case Projects 447
11.1 Introduction . 447
11.2 Learning Objectives . 447
11.3 Prerequisites . 448
11.4 Why Use Case Projects? . 448
11.5 Use Case 1: Telco Customer Churn Data Analysis and Visualization Assessment 449

Dataset Overview . 449
Tasks . 450

9

Deliverables . 452
11.6 Use Case 1: The Solution . 452
Data Manipulation and Transformation . 452

Data Import and Initial Exploration . 452
Data Cleaning and Transformation . 455
Recoding Additional Demographic and Payment Variables 456

Analysis and Insights . 457
Summarise Churn Rates by New Variables . 457
Additional Data Analysis . 459

Data Visualisation . 461
Histogram of Customer Tenure . 461
Bar Chart of Churn Count by Contract Type 462
Boxplot: MonthlyCharges across Contract Types 462
Scatter Plot: Tenure vs MonthlyCharges coloured by Churn Status 463
Line Plot: Churn Rate by Tenure . 464
Histogram: Tenure Distribution for Fibre Optic Customers 465

Telco Customer Churn Analysis Report . 466
Introduction . 466
Data Preparation and Transformation . 466
Exploratory Analysis and Key Findings . 467
Visual Insights . 469
Recommendations . 469
Conclusion . 470

11.7 Exercise 11.1: Analyzing a Rape Survey for the Federal Government of Nigeria 470
11.7.1 Project Overview . 470
11.7.2 The Dataset . 470
11.7.3 Your Task . 471

11.8 Integrating Lab Skills . 471
11.9 Conclusion and Further Steps . 472
11.10General Practice Quiz 11 . 472
11.11Reflective Summary . 478

Appendices 479

A Solutions 479
Lab 1: Getting Started with R . 479

Solution Quiz 1.1 . 479
Solution Quiz 1.2 . 480
Solution 1.2.1: Basic Calculations . 482
Solution 1.3.1: A Quick Hands-On . 483
Solution Quiz 1.3 . 483
Solution 1.3.3: Variable Assignment and Data Types 485

10

Solution Quiz 1.4 . 486
Solution 1.4.1: Conditional Statements . 488
Solution 1.4.2: Menu Selection Using switch() 489
Solution 1.4.3: Mini-Project - Basic Calculator in R 489

Lab 2: Understanding Data Structures . 490
Reflection Solution 2.1.1 . 490
Solution 2.1.1: Vector Selection . 490
Reflection Solution 2.1.2 . 491
Solution Quiz 2.1 . 492
Solution 2.1.2: Vector and Factor Manipulation 495
Solution 2.2.1: Matrix Transpose . 496
Solution 2.2.2: Matrix Inverse Multiplication 496
Solution Quiz 2.2 . 497
Solution 2.3.1: Subsetting a Dataframe . 498
Solution 2.2.3: Matrix Operations . 501
Solution Quiz 2.3 . 502
Solution 2.3.2: Data Frame Manipulation . 504
Solution Quiz 2.4 . 505
Solution 2.4.1: Working with Lists . 507
General Solution Quiz 2 . 508

Lab 3: Writing Custom Function . 512
Solution 3.1.1: Temperature Conversion . 512
Solution 3.1.2: Pythagoras Theorem . 512
Solution 3.1.3: Staff Data Manipulation Using switch() 513
Solution Quiz 3.1 . 515

Lab 4: Managing Packages and Workflows . 516
Solution Quiz 4.1 . 516
Solution Quiz 4.2 . 517
Solution Quiz 4.3 . 518

Lab 5: Data Transformation . 520
Solution Quiz 5.1 . 520
Solution Quiz 5.2 . 521
Solution 5.2.1: Top 5 Carnivorous Animals . 525
Solution Quiz 5.3 . 525
Solution 5.3.1: Missing Data Analysis Report for the Television Company Dataset528
Evaluation and Selection . 532
Conclusion . 533

Lab 6: Tidy Data and Joins . 534
Solution Quiz 6.1 . 534
Solution 6.1.1: Tidying the Pew Religion and Income Survey Data 537
Solution Quiz 6.2 . 542
Solution 6.2.1: Transforming the Television Company Dataset 545
Solution Quiz 6.3 . 550

11

Solution 6.3.1: Relational Analysis with the NYC Flights 2013 Dataset 553
Lab 7: Data Visualisation . 560

Solution Quiz 7.1 . 560
Solution Quiz 7.2 . 563
Solution 7.1.2: Reproducing the Smoking, Gender, and Lifespan Chart 566

Lab 8: Statistical Concept . 569
Solution Quiz 8.0 . 569
Solution Quiz 8.1 . 572
Solution- Exercise 8.1.2: Professor Francisca - A Generous Giver 575
Solution Quiz 8.2 . 578
Solution- Exercise 8.2.1 . 580
Solution Quiz 8.3 . 584
Solution-Exercise 8.3.1: Identify the Scale . 587

Lab 9: Sampling Techniques . 589
Solution 9.1.1: Simple Random Sampling with the Penguins Dataset 589
Solution 9.1.2: Stratified Sampling with the Diamonds Dataset 590
Solution 9.1.3: Cluster Sampling with a Simulated Dataset 593
Solution 9.1.4: Systematic Sampling on a Simple List 594
Solution Quiz 9.1: Probability Sampling . 596
Solution Quiz 9.2: Non-Probability Sampling 599

Lab 10: Data Science Concept . 601
Solution Quiz 10.1 . 601

Lab 11: Use Case Projects . 604
General Solution Quiz 11 . 604

B Downloading and Preparing the Data 610
B.1 Downloading the Data . 610
B.2 Setting Up Your Working Directory . 611

B.2.1 Creating a New RStudio Project for Each Exercise 611
B.2.2 Benefits of Using Separate Projects for Each Exercise 612

B.3 Data Usage and Ethics . 612
B.4 Getting Help . 613

12

Preface

Welcome to “Statistics and Data Analysis with R: A Lab-Based Approach” by Ezekiel
Ogundepo. This book is born out of a passion for teaching and a belief in learning by doing.
Over the years, I’ve seen countless students transform their understanding and skills through
hands-on experience, and it is this transformative journey that I hope to guide you through
in these pages.

R has emerged as a powerful tool for data analysis, statistics, and visualisation. Whether
you’re a student stepping into the world of data science for the first time, a professional
seeking to enhance your analytical capabilities, or simply a curious mind eager to explore new
horizons, this book is designed to meet you where you are.

The approach we’ve taken is straightforward yet effective: each chapter presents lab-based
experiments and exercises that encourage you to roll up your sleeves and dive into coding.
Rather than overwhelming you with abstract theory, we focus on practical application, allowing
you to see immediate results from the concepts you learn. This method not only reinforces
your understanding but also builds confidence as you witness your own progress.

We begin with the basics—navigating the RStudio interface, performing simple calculations,
and understanding fundamental data types. From there, we delve into more complex structures
like vectors, matrices, and data frames, equipping you with the tools to manipulate and analyse
data effectively. As you progress, you’ll learn to write custom functions, manage packages,
handle real-world data, and ensure the reproducibility of your analyses.

One of the unique aspects of this book is its emphasis on real-world applications. The labs
are crafted to mirror challenges you might face outside the classroom or office, bridging the
gap between learning and doing. By the end of this book, you’ll not only understand the
mechanics of R programming but also how to apply it to solve meaningful problems.

I have written this book in a conversational tone, much like how I would teach in a classroom
or guide a colleague. My aim is to make the material accessible and engaging, stripping away
unnecessary jargon without sacrificing depth or clarity. I’ve also included plenty of examples,
exercises, and tips to support your learning journey.

Remember, programming is as much an art as it is a science. It requires patience, practice,
and a willingness to experiment. Don’t be discouraged by mistakes—they are stepping stones
to mastery. I encourage you to take your time with each lab, explore variations of the examples
provided, and most importantly, enjoy the process of learning.

13

https://gbganalyst.github.io/
https://gbganalyst.github.io/

Thank you for choosing this book as your guide into the world of R programming. I am excited
to accompany you on this journey and look forward to the insights and discoveries that await
you.

Figure 1: Author’s Enthusiastic Invitation to Explore R Programming

Happy coding!

14

Part I

Your R Journey

15

1 Getting Started with R

1.1 Introduction

Welcome to Lab 1! In this first chapter, we’ll embark on an exciting journey into the world of R
programming and the powerful RStudio Integrated Development Environment (IDE). Whether
you’re new to programming or already familiar with other languages, this lab is designed to
lay a solid foundation for future data analysis and statistical computing explorations.

1.2 Learning Objectives

By the end of the lab, you will be able to:

• Explore the RStudio Interface
Get acquainted with the four main panes of RStudio and understand how each con-
tributes to a smooth and efficient coding experience.

• Perform Basic Calculations
Learn how to use R as a calculator, performing arithmetic operations while understanding
the order of operations.

• Understand Atomic Data Types
Delve into the fundamental data types in R—such as numeric, character, and logical
types—which are essential building blocks for working with data.

• Assigning Variables:
Practice creating variables, assigning values to them, and following proper naming
conventions—an essential skill for organizing your code.

• Using Conditional Statements
Explore how to control the flow of your programs using if, else if, and else statements,
along with logical operators, allowing your code to make decisions based on conditions.

By completing this lab, you’ll be comfortable with the RStudio environment and equipped to
perform basic calculations, manipulate data types, assign variables, and write simple scripts
that make decisions based on conditions. This is your first step toward mastering R and
unlocking its potential for data analysis and statistical computing.

16

1.3 Prerequisites

Before starting this lab, you should have:

• Basic computer knowledge (navigating files, installing software).

• An interest in learning programming and data analysis.

• No prior programming experience is required.

1.4 Why Learn R Programming?

R is a powerful programming language and software environment extensively used for statis-
tical computations, data cleaning, data analysis, and data visualisation. It is a vital tool for
statisticians, data scientists, and anyone interested in data mining. Since its inception, R has
become a cornerstone in data analysis, celebrated for its versatility and strong community
support.

1.4.1 A Brief History of R’s Development

The development of R programming commenced in 1993, spearheaded by Ross Ihaka and
Robert Gentleman at the University of Auckland, New Zealand. They released the initial
version on StatLib, marking the beginning of R’s evolution as an open-source tool designed to
empower the statistical and data analysis community.

By 1997, R had solidified its status as a GNU project, reinforcing its commitment to free soft-
ware principles and collaborative innovation. The release of version 1.0.0 in 2000 was pivotal,
establishing a stable and reliable platform for statistical computing and data analysis.

Over the years, R has continued to evolve with the introduction of transformative packages
such as:

• ggplot2 (2005): Revolutionized data visualization with a powerful and flexible grammar
of graphics.

• dplyr (2014): Streamlined data manipulation tasks, making it easier to transform and
summarize data.

• tidyverse suite (2016): Provided an integrated collection of packages for data science
workflows, promoting a consistent and efficient approach to data analysis.

17

In 2023, R celebrated its 30th anniversary, a testament to its journey from a niche academic
tool to a widely adopted resource across industries worldwide. This milestone underscores R’s
enduring robustness, adaptability, and the strength of its vibrant community1.

1.4.2 Key Reasons to Learn R

• Free and Open Source: R is entirely free, making it accessible to everyone.

• Extensive Community Support: An active global community constantly develops and
shares resources.

• Industry Application: From tech giants like Google and Facebook to finance leaders like
JPMorgan and HSBC, R is a trusted tool across industries.

Figure 1.1: Compelling Reasons to Learn R

1.4.3 Companies Using R for Analytics

R’s widespread adoption is evident in the diversity of industries leveraging its capabilities.
From creating predictive models to visualising business trends, companies like Facebook,
Google, Deloitte, and HSBC rely on R for analytics.

1For a detailed breakdown of R’s development, refer to the comprehensive timeline created by Tim Brock,
Colin Gillespie, and the Jumping Rivers team at https://www.jumpingrivers.com/blog/r-timeline.

18

https://www.jumpingrivers.com/blog/r-timeline

Figure 1.2: Major Companies Using R Programming

For instance, data analysts at Netflix use R to understand viewing patterns and recommend
shows to users. Healthcare professionals employ R to analyse patient data for better treatment
outcomes. By learning R, you’re gaining a skill that is in demand across various industries.

1.4.4 A Steep Yet Rewarding Learning Curve

R’s learning curve can be steep initially. However, its design makes once-difficult tasks easier
and intuitive. As you progress, you will automate complex workflows, create visually com-
pelling graphics, and perform advanced analyses efficiently.

Figure 1.3: The Learning Curve of R Programming

19

1.5 Experiment 1.1: Installing R and RStudio

R is the core programming language (Figure 1.4a), while RStudio is an integrated development
environment (IDE) that facilitates writing, executing, and debugging R code (Figure 1.4b).

(a) R Graphical User Interface (Rgui) (b) RStudio Interface

Figure 1.4: Comparing the R GUI and RStudio IDE Interfaces

1.5.1 Installing R

The installation process for R varies slightly depending on your operating system:

• For Windows Users:

Visit the CRAN (Comprehensive R Archive Network) website at this link. Download
the latest version of R for Windows, then follow the installation prompts to complete
the setup.

• For Mac Users:

Visit the CRAN website for Mac at this link. Download the appropriate version for your
macOS, and follow the on-screen instructions to install it.

1.5.2 Installing RStudio

Once R is installed, you should install RStudio, which provides an easier interface for inter-
acting with R.

• Visit the RStudio download page. Select the free version of RStudio Desktop, and
download the appropriate installer for your operating system (Windows, macOS, or
Linux). Then, run the installer and follow the instructions.

20

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/macosx
https://posit.co/download/rstudio-desktop/#download

Code Execution Guidance

After installing R and RStudio, open RStudio to ensure everything works correctly. The
R console will appear in the lower-left pane, indicating that R is ready to use.

With R and RStudio installed you’re ready to start your journey into data analysis, statistical
computing, and programming with R!

1.5.3 Practice Quiz 1.1

Question 1:

What is the primary role of R in the R programming environment?

a) A user interface for writing code

b) A programming language for statistical computing

c) A package manager

d) A data visualization tool

Question 2:

Which of the following best describes RStudio?

a) A standalone programming language

b) A text editor for writing R scripts

c) An Integrated Development Environment (IDE) for R

d) A package repository for R

Question 3:

Which of the following is the correct sequence of steps to install R and RStudio on your
computer?

a) Install RStudio first, then install R from the CRAN website.

b) Install R from the CRAN website first, then install RStudio.

21

c) Download both R and RStudio from the RStudio website and install them simultane-
ously.

d) Install R from the Microsoft Store, then install RStudio from the CRAN website.

Question 4:

Which keyboard shortcut runs the current line of code in RStudio on Windows?

a) Ctrl + S

b) Ctrl + Enter

c) Alt + R

d) Shift + Enter

Question 5:

After successful installation, which pane in RStudio indicates that R is ready to use?

a) Source Pane

b) Console Pane

c) Environment Pane

d) Files Pane

See the Solution to Quiz 1.1

1.6 Experiment 1.2: Exploring the RStudio Interface

Now that you have R and RStudio installed let’s explore the RStudio interface. Understanding
the layout and purpose of each pane will help you navigate and use RStudio effectively.

1.6.1 The Four Panes of RStudio

RStudio is divided into four main panes, each serving a specific purpose to enhance your coding
workflow2.

2For a detailed overview of all RStudio’s features, see the RStudio User Guide at https://docs.posit.co/ide/user.

22

https://docs.posit.co/ide/user

Figure 1.5: Annotated Overview of Key RStudio Panels

1.6.1.1 Source Pane

• This is where you write your R code. Think of it as your notepad or a place to draft
your work.

• The code you write here won’t run until you specifically tell it to. You do this by clicking
the “Run” button or using the keyboard shortcut (Ctrl + Enter for Windows or Cmd +
Enter for Mac).

• The Source Pane is excellent for writing scripts you can save and use later.

1.6.1.2 Console Pane

• This is the heart of R’s interaction with you. It’s where R evaluates your commands.

• When you “Run” your code from the Source, it appears here, and R processes it imme-
diately.

• You can also directly type commands here for quick calculations or testing. However,
anything you type in the console won’t be saved if you close RStudio.

1.6.1.3 Environment/History Pane

• Environment Tab: This shows all the variables, data frames, and objects you’ve cre-
ated in your current R session. It’s like a snapshot of everything you’re working with.

23

• History Tab: This records every command you’ve entered, allowing you to track your
actions.

1.6.1.4 Files/Plots/Packages/Help Pane

• Files Tab: View and manage the files on your computer, similar to a file explorer.

• Plots Tab: Displays any graphs or charts you create with your R code.

• Packages Tab: Shows the packages (additional tools and functions) available in R and
allows you to install, load, or update them as needed.

• Help Tab: This is your go-to place for understanding how functions work. If you’re
unsure about something, R’s built-in documentation will be here to guide you.

How to Run Code in RStudio

To execute the code in the Source Pane:

1. Place your cursor on the line of code you want to run.

2. Press Ctrl + Enter (Windows) or Cmd + Enter (Mac) to run the current line.

3. To run multiple lines, highlight the code block and use the same shortcut.

4. Observe the output in the Console Pane.

This practice will help you test code snippets as you progress through the lab.

1.6.2 Performing Basic Calculations in R

R is a powerful and versatile tool for performing all standard arithmetic operations. It supports
a range of basic operators, including Addition (+), Subtraction (-), Multiplication (*), Division
(/), Exponentiation (^ or **), Modulo (%%), and Parentheses (()), which allow for grouping
operations to enforce precedence.

Table 1.1 below summarizes the basic arithmetic operations in R, including their mathematical
symbols, corresponding R operators, examples, and results.

Table 1.1: Arithmetic Operations in R: Symbols, Operators, and Examples

Arithmetic
Operations

Mathematical
Symbol R Operator Examples Result

Addition + + 3 + 2 5

24

Arithmetic
Operations

Mathematical
Symbol R Operator Examples Result

Subtraction - - 3 - 1 2
Multiplication × * 3 * 2 6
Division ÷ / 4 / 2 2
Exponentiation 𝑎𝑏 ^ or ** 2 ^ 2 or 2 ** 2 4
Parentheses () () 2 * (2 + 1) 6
Modulus 3 mod 2 %% 3 %% 2 1

Examples:

Here are examples of basic arithmetic operations in R:

6 + 12 - 8 # Performs addition and subtraction

#> [1] 10

2 * 3 # Multiplies two numbers

#> [1] 6

100 / 50 # Divides 100 by 50

#> [1] 2

3 * 5 / 3 # Combines multiplication and division

#> [1] 5

3^2 # Raises 3 to the power of 2 (can also use 3**2)

#> [1] 9

Modulo Operation

The modulus (or “mod”) operator returns the remainder after division. For example, 9 mod
2 = 1 because dividing 9/2 = 4 leaves a remainder of 1. In R, this is written as:

25

9 %% 2 # Returns 1

#> [1] 1

Parenthesis or brackets

Parentheses are used to group operations and override the default precedence of operators. In
mathematics, you may know this as BODMAS (Brackets, Orders, Division, Multiplication, Ad-
dition, Subtraction). In programming, we use BEDMAS: Brackets, Exponentiation, Division,
Multiplication, Addition, Subtraction.

For example:

3 * (2 + 3) # Evaluates (2 + 3) first, then multiplies the result by 3

#> [1] 15

(3 + 2) * (6 - 4) # Groups operations with parentheses

#> [1] 10

Square Root Calculations

Use the sqrt() function to calculate square roots,. For example:

sqrt(125)

#> [1] 11.18034

You can also combine square roots with other operations:

19 / sqrt(19)

#> [1] 4.358899

26

1.6.3 Comments in R

Comments in R begin with the # symbol and are ignored during execution. They are essential
for:

1. Making your code easier to understand.

2. Helping others interpret your code.

3. Documenting your thought process.

Example:

Multiplying 2 by 8

2 * 8

#> [1] 16

It is a good practice to add a space after the # for better readability:

3 + 6 # Adding 3 and 6

#> [1] 9

1.6.4 Comparison Operators

Comparison operators compare values and return TRUE or FALSE, known as logical. The
following are the most common comparison operators in R:

• Equal to (==)

• Not equal to (!=)

• Greater than (>)

• Less than (<)

• Greater than or equal to (>=)

• Less than or equal to (<=)

5 == 3 # Returns FALSE

27

#> [1] FALSE

25 != 10 # Returns TRUE

#> [1] TRUE

100 > 30 # Returns TRUE

#> [1] TRUE

60 >= 45 # Returns TRUE

#> [1] TRUE

100 <= 1000 # Returns TRUE

#> [1] TRUE

Common Errors and Debugging Tips

• Syntax Errors: Missing commas, unmatched parentheses, or misspelt functions
can cause errors.

• Tip: Read error messages carefully; they often indicate the line number and type
of error.

• Incorrect Operator Use: Using = instead of == for comparison.

• Tip: Remember that = is for assignment, == is for comparison.

1.6.5 Practice Quiz 1.2

Question 1:

Which pane in RStudio is primarily used for writing and editing R scripts?

a) Console Pane

b) Source Pane

28

c) Environment Pane

d) Files Pane

Question 2:

What does the Environment Tab in RStudio display?

a) Available packages and their statuses

b) Active variables, data frames, and objects in the current session

c) The file directory of your project

d) Graphical plots and visualizations

Question 3:

How can you execute a selected block of code in the Source Pane?

a) Press Ctrl + S

b) Press Ctrl + Enter

c) Click the “Run” button

d) Both b) and c)

Question 4:

Which pane would you use to install and load R packages?

a) Source Pane

b) Console Pane

c) Files Pane

d) Packages Tab within Files/Plots/Packages/Help Pane

Question 5:

Where can you find R’s built-in documentation and help files within RStudio?

a) Source Pane

29

b) Console Pane

c) Environment Pane

d) Help Tab within Files/Plots/Packages/Help Pane

See the Solution to Quiz 1.2

1.6.6 Exercise 1.2.1: Basic Calculations

• Explore RStudio

Open RStudio and familiarise yourself with the four panes.

• Perform Calculations

Perform the following calculations in the Source Pane, adding comments where appro-
priate:

– 2 + 6 − 12
– 4 × 3 − 8
– 81 ÷ 6
– 16 mod 3
– 23

– (3 + 2) × (6 − 4) + 2

See the Solution to Exercise 1.2.1

1.7 Experiment 1.3: Understanding Atomic Data Types and
Variable Assignment

Now that you’re comfortable using R for basic arithmetic and understand how to write com-
ments and use comparison operators, let’s delve into how R handles different data types. In
this section, we’ll explore atomic data types and learn how to assign values to variables, which
are fundamental concepts in programming.

30

1.7.1 Atomic Data Types

R works with several atomic data types:

• Numeric: Integers (e.g., 4, -2) or doubles (e.g., 4.7, -0.26)

• Character: Text strings enclosed in quotes (e.g., "Nigeria", "Hello world")

• Logical: Boolean values (TRUE, FALSE)

• Complex: Represents numbers with real and imaginary parts (e.g., 2 + 3i, -1.5 - 4i).

Figure 1.6: Data Types in R Programming

You can determine the data type of an object using the class() function.

class(2) # Returns "numeric"

#> [1] "numeric"

class("Anthony Joshua") # Returns "character"

#> [1] "character"

class(TRUE) # Returns "logical"

#> [1] "logical"

class(2 + 3i) # Returns "complex"

#> [1] "complex"

31

1.7.2 Variable Assignment

When working in R, you’ll often find yourself storing values, results, or objects for later use.
This is where variables come in. Variables allow you to hold onto data so that you can reference
it easily whenever you need it. Assigning a value to a variable is straightforward in R, and you
can do this using the assignment operator, which is <- or =. While both work, you’ll notice
that most R users prefer <- for assignments3. This preference is largely based on convention
and readability, as it helps keep your code clean and consistent.

Let’s look at a few examples of the variable assignments in action. Here, we’ll assign different
types of data to variables.

number <- 10 # 'number' now holds the value 10

class(number) # Returns "numeric"

#> [1] "numeric"

state <- "Lagos"

class(state) # Returns "character"

#> [1] "character"

After running these lines, each variable (number, state) stores a value you can reuse or modify
later in your code. For instance, if you want to check the value of number, just type:

number

#> [1] 10

And R will display the stored value.

3You might wonder why R uses <- instead of the = symbol that you might see in other programming languages.
While you can use = for assignment in R, it’s generally preferred to use <- for clarity. This is partly because
= is also used in function arguments, so sticking to <- makes your code easier to read and helps avoid
confusion.

32

Tip

If you’re using a Windows, a quick way to type the assignment operator <- is by pressing
ALT + _; on a Mac, you can use Option + _. This shortcut can save time as you write
and assign variables in R.

Once you’ve assigned a value to a variable, you can use that variable in expressions. For
instance:

x <- 15

y <- 12

x + 1

#> [1] 16

x + y

#> [1] 27

It’s also good to know that you can overwrite variables if needed. Say you assigned x <- 15,
but later, you decide x should be 20. You can just assign it again:

x <- 20

Now, every time you call x, R will know that its value is 20, not 15 anymore.

1.7.3 Rules for Naming Variables

• Must start with a letter.

• Can contain letters, numbers, underscores _, or dots . after the first letter.

• No spaces or special characters.

• R is case-sensitive (Age and age are different variables).

33

Best Practices

• Name Your Variables Clearly: Choose names that describe their data, like
total_sales or average_height, rather than generic names like x or y. Using
clear, descriptive variable names is a best practice because it makes your code easier
to understand and maintain. This way, anyone reading your code can quickly grasp
the purpose of each variable without needing additional explanations.

• Avoid Overwriting R’s Built-in Functions: Names like mean, sum, and data
are already used by R, so avoid using these as variable names to prevent errors.

In short, variable assignment is like giving a shortcut name to a value or a piece of data.
Once assigned, you can call on that name whenever needed, making your code easier to
follow and maintain. And remember, R is pretty flexible, so don’t worry too much if you
make a mistake – you can permanently reassign or update your variables as you go!

1.7.4 Exercise 1.3.1: A Quick Hands-On

Try it yourself! Create a variable named my_name and assign your name to it. Then, print a
greeting that says:
Hello, [Your Name]!

See the Solution to Exercise 1.3.1

1.7.5 Reflective Exercise 1.3.2: Best Practices and Pitfalls in Variable Naming

In this exercise, you will explore the differences between acceptable and unacceptable variable
names in R. Understanding why some naming conventions work and others don’t is essential
for writing clean, error-free code.

Instructions:

1. Review the Table 1.2 below and identify why each name is either acceptable or unac-
ceptable according to R’s variable naming rules.

2. Answer the following questions:

• Why are some variable names acceptable while others are not?
• What makes the acceptable variable names follow R’s rules and best practices?

3. Reflect on how these rules can help make your code more readable and easier to debug.

34

Table 1.2: Comparison of Valid and Invalid Variable Names

S/N Acceptable Variable Names Unacceptable Variable Names
1 health.status health(status)
2 covid_19_cases covid-19-cases
3 budget2024 2024budget
4 sales_price_2024 sales price 2024

1.7.6 Data Type Conversions

In R, data comes in various types, such as numeric, character, logical, and complex. Sometimes,
you’ll need to convert data from one type to another—a process known as typecasting. This
is essential when performing operations requiring data to be in a specific format.

1.7.6.1 Using as. Functions for Typecasting

R provides a set of as. functions that make typecasting straightforward. These functions
allow you to explicitly convert variables to a desired data type. Table 1.3 summarising these
functions:

Table 1.3: Common Functions to Convert Between Data Types

Data Type Converting To How to Do It
Numeric as.numeric(variable_name)
Character as.character(variable_name)
Logical as.logical(variable_name)
Complex as.complex(variable_name)

Example: Converting Character to Numeric

Suppose you have a variable weight that is currently a character string:

weight <- "64.45"

class(weight) # Returns "character"

#> [1] "character"

35

To perform numerical operations on weight, you need to convert it to a numeric type:

weight_num <- as.numeric(weight)

class(weight_num) # Returns "numeric"

#> [1] "numeric"

Now, weight_num is of numeric type, and you can use it in arithmetic calculations:

weight_num * 2

#> [1] 128.9

1.7.6.2 Handling NA Results

Sometimes, R cannot convert a value to the desired type. When this happens, it returns NA
(Not Available) and a warning message. This often occurs in the following situations:

• Converting Non-Numeric Characters to Numeric: If a character string contains
letters or symbols that cannot be interpreted as numbers.

• Converting Non-Boolean Strings to Logical: If the string does not represent TRUE
or FALSE.

Example 1:

height <- "161.5 cm"

as.numeric(height) # Returns NA with a warning

#> Warning: NAs introduced by coercion

#> [1] NA

In this case, the string "161.5 cm" includes non-numeric characters (" cm"), so R cannot
convert it to a numeric value.

Example 2:

36

smiling_face <- "No"

as.logical(smiling_face)

#> [1] NA

Here, "No" does not correspond to TRUE or FALSE, so the conversion fails.

Common Errors and Debugging Tips

• NA Values After Conversion: Occurs when non-numeric characters are present
in a string being converted to numeric.

• Tip: Clean your data to ensure it contains only the characters you expect.

• Variable Not Found: This occurs when you try to use a variable that hasn’t
been defined.

• Tip: Ensure you’ve assigned a value to the variable and that it’s spelled correctly.

Best Practices

• Inspect Your Data: Before converting, check your data to ensure it’s in the
correct format.

• Handle NAs Appropriately: Use functions like is.na() to identify and manage
NA values after conversion.

• Clean Data When Necessary: Remove or replace unwanted characters that
may prevent successful conversion.

By understanding how to perform data type conversions and handle potential issues,
you’ll be better equipped to manipulate and analyze data effectively in R.

1.7.7 Practice Quiz 1.3

Question 1:

Which function is used to determine the class of an object in R?

a) vector()

37

b) c()

c) class()

d) typeof()

Question 2:

What will the class of the following object be in R?

my_var <- TRUE

a) numeric

b) character

c) logical

d) complex

Question 3:

Which of the following is an acceptable variable name in R?

a) 2nd_place

b) total-sales

c) average_height

d) user name

Question 4:

How can you convert a character string "123" to a numeric type in R?

a) to.numeric("123")

b) as.numeric("123")

c) convert("123", "numeric")

d) numeric("123")

38

Question 5:

What will be the result of the following R code?

weight <- "60.4 kg"
weight_numeric <- as.numeric(weight)

a) 60.4

b) "60.4"

c) NA with a warning

d) NULL

See the Solution to Quiz 1.3

1.7.8 Exercise 1.3.3: Variable Assignment and Data Types

Determine the classes of the following variables and convert them if necessary. Fill in the
blanks (indicated by ---) to complete the code.

age <- 15

---(age) # What is the class?

weight <- "60.4 kg"

class(---) # What is the class?

Can you convert weight to numeric?
weight_numeric <- ---(weight)

smile_face <- "FALSE"

---(smile_face) # What is the class?

What happens if you convert smile_face to logical?
smile_face_logical <- as.logical(---)

See the Solution to Exercise 1.3.3

39

Common Errors and Debugging Tips

• Converting Strings with Units: Direct conversion may fail due to non-numeric
characters.

• Tip: Use gsub() to remove unwanted characters before conversion.

1.8 Experiment 1.4: Conditional Statements in R

Conditional statements are a vital tool for controlling the flow of your program based on logical
conditions. They allow you to execute different blocks of code depending on whether certain
conditions are true or false, making your code dynamic and adaptable. The primary constructs
are if, else, else if.

Figure 1.7: If-Else Statement in R Programming

1.8.1 The if Statement

This is the most basic conditional construct. It executes code only if a specified condition is
TRUE.

x <- 5
if (x > 3) {
print("x is greater than 3")

}

#> [1] "x is greater than 3"

40

1.8.2 The else Statement

Provides an alternative set of instructions if the if condition is FALSE.

x <- 2
if (x > 3) {
print("x is greater than 3")

} else {
print("x is not greater than 3")

}

#> [1] "x is not greater than 3"

1.8.3 The else if Statement

The else if can be used to check situations with multiple conditions sequentially. It provides
an additional condition check after the initial if statement.

x <- 3
if (x > 5) {
print("x is greater than 5")

} else if (x == 5) {
print("x is equal to 5")

} else {
print("x is less than 5")

}

#> [1] "x is less than 5"

Using Logical Operators

You can combine conditions using logical operators:

• AND (&): Both conditions must be TRUE.
• OR (|): At least one condition must be TRUE.
• NOT (!): Inverts the logical value.

Example using AND (&):

41

x <- 8
y <- 12

if (x < 10 & y > 10) {
print("Both conditions are true")

} else {
print("At least one condition is false")

}

In this example, the if statement checks if both x < 10 and y > 10 are TRUE. Since both
conditions are TRUE, the output will be:

"Both conditions are true"

Example using OR (|):

a <- 3
b <- 20

if (a < 5 | b > 25) {
print("At least one condition is true")

} else {
print("Neither condition is true")

}

In this example, the if statement checks if either a is less than 5 or b is greater than 25. Since
a < 5 is TRUE, the output will be:

"At least one condition is true"

Example using NOT (!):

c <- FALSE

if (!c) {
print("The condition is false")

} else {
print("The condition is true")

}

42

Here, the if statement uses the NOT operator to check if c is not TRUE. Since c is FALSE, !c
becomes TRUE, and the output will be:

"The condition is false"

1.8.4 The ifelse() Function

The ifelse() function is a vectorised form of conditional statements. It applies a condition
to each element of a vector and returns one value if the condition is TRUE and another value if
the condition is FALSE. The syntax is as follows:

ifelse(condition, value_if_true, value_if_false)

Where:

• condition: A logical expression to evaluate.

• value_if_true: The value to return if the condition is TRUE.

• value_if_false: The value to return if the condition is FALSE.

Example:

number <- 21

ifelse(number %% 2 == 0, "Even", "Odd")

#> [1] "Odd"

In this example, ifelse() checks whether number %% 2 == 0 (that is, whether number is
even). If it is even, it returns "Even"; otherwise, it returns "Odd". For more advanced uses,
see Chapter 2.5.5.5.

43

1.8.5 The switch Function

The switch() function is a control flow statement that allows you to execute different pieces
of code based on the value of an expression. It’s particularly useful when you have multiple
conditions to check and want a cleaner alternative to lengthy if...else statements.

There are two primary ways to use switch() in R:

1. Numeric Switching: Where the expression evaluates to a numeric index.

2. Character Switching: Where the expression evaluates to a character string matching
one of the named alternatives.

The general structure of switch() function is as follows:

switch(EXPR,
...

)

Where:

• EXPR: An expression that evaluates to a numeric value or a character string.

• ...: A sequence of alternatives (unnamed or named arguments).

The switch() function uses the same syntax for both numeric and character expressions. The
behavior of the function depends on the type of the EXPR argument you provide.

When to Use switch()

• When you have a variable that can take on multiple known values and you want to
execute different code based on each value.

• To improve code readability over multiple if...else statements.

• When performance is a consideration, as switch() can be more efficient than multiple
if...else checks.

Example 1: Day of the Week Activities Using Character Switching

Suppose you want to plan activities based on the day of the week.

44

day <- "Saturday"

activity <- switch(day,
Monday = "Go to the gym",
Tuesday = "Attend a cooking class",
Wednesday = "Work from home",
Thursday = "Meet friends for dinner",
Friday = "Watch a movie",
Saturday = "Go hiking",
Sunday = "Rest and recharge",
"Invalid day"

)

print(paste("Today's activity:", activity))

#> [1] "Today's activity: Go hiking"

Explanation

• Variable day: Contains the day of the week as a string.

• Using switch():

– Matches day against the provided day names.

– If a match is found, returns the corresponding activity.

– If no match is found, returns "Invalid day".

Example 2: Mapping Codes to Descriptions Using Character Switching

Suppose you have status codes that need to be mapped to descriptive messages.

status_code <- 404

message <- switch(as.character(status_code),
"200" = "OK: The request has succeeded.",
"301" = "Moved Permanently: The resource has moved.",
"400" = "Bad Request: The request could not be understood.",
"401" = "Unauthorized: Authentication is required.",
"404" = "Not Found: The resource could not be found.",
"500" = "Internal Server Error: The server encountered an error.",
"Unknown Status Code"

)

45

print(message)

#> [1] "Not Found: The resource could not be found."

Explanation:

• Variable status_code: Contains an HTTP status code.

• Converting to Character: as.character(status_code) because switch() with
character matching requires a string.

• Using switch():

– Matches the status code against the provided cases.

– Returns the corresponding message or "Unknown Status Code" if no match is
found.

Example 3: Simple Calculator Using Numeric Switching

Let’s create a simple calculator that performs operations based on a numeric choice.

User inputs
num1 <- 10
num2 <- 5
Options: 1 for addition, 2 for subtraction, 3 for multiplication, 4 for division
choice <- 3

Use switch() to perform the selected operation
result <- switch(choice,
num1 + num2, # If choice == 1
num1 - num2, # If choice == 2
num1 * num2, # If choice == 3
if (num2 != 0) num1 / num2 else "Division by zero error", # If choice == 4
"Invalid operation"

) # Default if choice > number of cases

Display the result
print(paste("The result is:", result))

#> [1] "The result is: 50"

Explanation

46

• Variables:

– num1, num2: Numbers to operate on.

– choice: Numeric choice of operation.

• Using switch():

– Since choice is numeric, switch() selects the expression based on position.

∗ 1: num1 + num2

∗ 2: num1 - num2

∗ 3: num1 * num2

∗ 4: Division with a check for division by zero.

– If choice exceeds the number of provided alternatives (4), the default "Invalid
operation" is returned.

Common Errors and Debugging Tips

• Missing Braces {}: Forgetting to include braces in if statements.

• Tip: Always include braces even if there’s only one line of code inside.

• Incorrect Logical Operators: Using && instead of & or || instead of | can lead
to unexpected results.

• Tip: Use & and | for vectorized operations, which is common in R.

1.8.6 Practice Quiz 1.4

Question 1:

What will be the output of the following R code?

number <- 10
if (number %% 2 == 0) {
print("Even")

} else {
print("Odd")

}

a) Odd

47

b) Even

c) TRUE

d) FALSE

Question 2:

Which logical operator in R returns TRUE only if both conditions are TRUE?

a) | (OR)

b) & (AND)

c) ! (NOT)

d) ^ (XOR)

Question 3:

In the switch() function, what does the following code return when choice is 3?

num1 <- 10
num2 <- 5
choice <- 3

result <- switch(choice,
num1 + num2,
num1 - num2,
num1 * num2,
"Invalid operation"

)

print(result)

a) 15

b) 5

c) 50

d) "Invalid operation"

Question 4:

What is the purpose of including a default case in a switch() statement?*

48

a) To handle cases where the expression matches multiple conditions

b) To execute a block of code if none of the specified cases match

c) To prioritize certain cases over others

d) To initialize variables within the switch

Question 5:

Which of the following uses the NOT (!) operator correctly in an if statement?

a)

if (!c) {
print("The condition is false")

}

b)

if (c!) {
print("The condition is false")

}

c)

if (c != TRUE) {
print("The condition is false")

}

d) Both a) and c)

See the Solution to Quiz 1.4

1.8.7 Exercise 1.4.1: Conditional Statements

Task 1

What is the output of the following code?

49

number <- 10

if (number %% 2 == 0) {
print("Even")

} else {
print("Odd")

}

Task 2

Given m <- 5 and n <- 7, write code that prints:

• “m is greater than n” if m > n
• “m is less than n” if m < n
• “m and n are equal” if m == n

See the Solution to Exercise 1.4.1

1.8.8 Exercise 1.4.2: Menu Selection Using switch()

Simulate a simple text-based menu where a user selects an option. Use the switch() function
to determine the action based on the user’s selection.

Your Task:

1. Simulate User Input:

• Assign a value to a variable option to represent the user’s selection.
• Possible options: "balance", "deposit", "withdraw", "exit".

2. Use the switch() Function:

• Match the value of option to the appropriate case using switch().
• For each case, assign a message that describes the action.

Possible Options and Messages:

• “balance”: Display “Your current balance is $1,000.”

• “deposit”: Display “Enter the amount you wish to deposit.”

• “withdraw”: Display “Enter the amount you wish to withdraw.”

• “exit”: Display “Thank you for using our banking services.”

• Default: Display “Invalid selection. Please choose a valid option.”

50

3. Include a Default Case:

• If the user input does not match any of the specified options, provide a default
message indicating an invalid selection.

4. Display the Message:

• Use print() to display the message corresponding to the user’s selection.

Here’s a starting point for your code:

Simulate user input
option <- "---" # Options could be "balance", "deposit", "withdraw", "exit"

Use switch() to determine the action
message <- switch(...,

balance = "You have $1,000 in your account.",
deposit = ...,
withdraw = "How much would you like to withdraw?",
"Invalid selection. Please choose a valid option.")

Display the message
print(...)

Replace the ... with the correct values and complete the exercise!

See the Solution to Exercise 1.4.2

1.8.9 Exercise 1.4.3: Mini-Project - Basic Calculator in R

Using what you’ve learned about arithmetic operations, variables, and conditional statements,
create a simple calculator program in R that:

• Prompts the user to enter two numbers.

• Asks the user to choose an operation: addition, subtraction, multiplication, or division.

• Performs the operation and displays the result.

Hint:

• Use the readline() function to get user input.

• Convert the input to numeric using as.numeric().

• Use a switch() statement to handle the operation selection.

See the Solution to Exercise 1.4.3

51

1.9 Further Reading

To further enhance your R programming skills, here are some excellent resources:

• RStudio Cheat Sheets:
https://www.rstudio.com/resources/cheatsheets

• Introduction to R by RStudio:
https://education.rstudio.com/learn/beginner

• YaRrr! The Pirate’s Guide to R by Nathaniel D. Phillips
https://bookdown.org/ndphillips/YaRrr

• R for Data Science by Hadley Wickham, Mine Çetinkaya-Rundel, and Gar-
rett Grolemund
https://r4ds.hadley.nz

• R for Data Science: Exercise Solutions by Jeffrey B. Arnold
https://jrnold.github.io/r4ds-exercise-solutions

• Big Book of R by Oscar Baruffa
https://www.bigbookofr.com

1.10 Reflective Summary

Congratulations on completing Lab 1! You’ve taken your first steps into R programming and
have covered much ground:

• Installed R and RStudio
Set up your programming environment.

• Explored the RStudio Interface
Learned how to use RStudio’s four main panes to write, execute, and manage your R
code effectively.

• Performed Basic Calculations in R
Practiced using R for arithmetic operations and understood operator precedence.

• Understood Atomic Data Types and Variable Assignment
Explored numeric, character, and logical data types, and learned how to identify and
convert between them.

• Used Conditional Statements in R
Controlled the flow of your programs using if, else if, and else statements, and used
logical operators.

52

https://www.rstudio.com/resources/cheatsheets
https://education.rstudio.com/learn/beginner
https://bookdown.org/ndphillips/YaRrr
https://r4ds.hadley.nz
https://jrnold.github.io/r4ds-exercise-solutions
https://www.bigbookofr.com

Take a moment to reflect on how these foundational skills can be applied to solving real-world
problems. As you progress through this book, each lab will build on these essentials, guiding
you toward proficiency in data analysis with R.

Keep experimenting with the code and exploring built-in functions. The more you practice,
the more confident and comfortable you’ll become.

What’s Next?

In the next lab, we’ll delve into R’s fundamental data structures, including vectors, ma-
trices, and data frames—key data manipulation and analysis tools.

53

2 Understanding Data Structures

2.1 Introduction

Welcome to Lab 2! In this lab, we’ll delve into the fundamental data structures in R that
are essential for data analysis and manipulation. Understanding these data structures will
empower you to handle data efficiently and perform various operations crucial for statistical
analysis and data science tasks.

2.2 Learning Objectives

By completing this lab, you will be able to:

• Identify Fundamental Data Structures
Recognize and describe the key characteristics of vectors, matrices, data frames, and lists
in R.

• Create Data Structures
Construct vectors, matrices, data frames, and lists using appropriate functions and syn-
tax in R.

• Manipulate Data Structures
Perform operations such as indexing, slicing, and modifying elements within vectors,
matrices, data frames, and lists.

• Apply Appropriate Operations and Functions
Utilize relevant R functions and operators to perform calculations and transformations
specific to each data type.

• Demonstrate Understanding Through Application
Solve problems and complete exercises that require the correct application of operations
and functions to manipulate and analyze data within these structures.

By completing this lab, you’ll have a solid foundation in working with vectors, matrices, data
frames, and lists, setting you up for success in more advanced topics.

54

2.3 Prerequisites

Before starting this lab, you should have:

• Completed Lab 1 or have basic knowledge of R programming fundamentals.

• Familiarity with basic arithmetic operations and variable assignment in R.

• An interest in learning how to manage and manipulate data effectively.

2.4 Exploring Data Structures in R

R offers several fundamental data structures to handle diverse data and analytical needs. These
include vectors, matrices, data frames, and lists.

Figure 2.1: Data Structures in R Programming

2.5 Experiment 2.1: Vector

A vector is a one-dimensional array in R that stores elements of the same data type. Vectors are
the most basic and frequently used data structures in R and are essential for data manipulation

55

and analysis.

Figure 2.2: Types of Vectors in R Programming

2.5.1 Creating a Vector

You can create a vector in R using the c() function1, which stands for “combine” or “concate-
nate.”

Example 1: Eye Colour

eye_colour <- c("Green", "Blue", "Brown", "Green", "Green", "Brown", "Blue")

eye_colour

#> [1] "Green" "Blue" "Brown" "Green" "Green" "Brown" "Blue"

Here, eye_colour is a character vector, as it contains text values and the c() function makes
it easy to combine individual elements into a single vector.

1The c() function is used to combine or concatenate values into a vector. It serves as a fundamental tool for
creating vectors of various data types, such as numeric, character, or logical values.

56

Best Practice:

When using the c() function, it’s a good practice to add a space after each comma. This
makes your code cleaner and easier to read.

Example 2: Product Prices

Vector of product prices in USD

product_prices <- c(19.99, 5.49, 12.89, 99.99, 49.95)

product_prices

#> [1] 19.99 5.49 12.89 99.99 49.95

2.5.2 Checking the Type of a Vector

To determine the data type of a vector, use the class() function:

class(product_prices)

#> [1] "numeric"

2.5.3 Length of a Vector

The length of a vector refers to the total number of elements it contains. You can determine
this using the length() function, which returns an integer representing the total count of
elements in the vector.

covid_confirmed <- c(31, 30, 37, 25, 33, 34, 26, 32, 23, 45)

length(covid_confirmed)

#> [1] 10

57

2.5.4 Advanced Vector Creation

While the simplest way to create a vector is by directly assigning values, R provides powerful
tools for generating and manipulating vectors tailored to specific needs. This section explores
advanced methods like :, c(), seq(), rep(), and sample() to create flexible, efficient, and
custom vectors.

2.5.4.1 : Operator - Quick Sequence Generation

The : operator generates a sequence of integers between a starting and an ending value.

Syntax:

start:end

Where:

• start: The starting value of the sequence.

• end: The ending value of the sequence.

Examples:

• Create a sequence from 1 to 10:
sequence <- 1:10
sequence

#> [1] 1 2 3 4 5 6 7 8 9 10

• Create a descending sequence:
reverse_sequence <- 10:1
reverse_sequence

#> [1] 10 9 8 7 6 5 4 3 2 1

Use Case

The : operator is ideal for quickly generating ranges for indexing, loops, or other opera-
tions requiring consecutive integers.

58

2.5.4.2 c() Function - Vector Concatenation

The c() function combines individual elements or existing vectors into a single vector.

Syntax:

c(element1, element2, ..., elementN)

Where:

• element1, element2, …, elementN: The individual values or vectors to be combined into
a single vector.

Examples:

• Combine numeric elements:
numbers <- c(2, 4, 6, 8)
numbers

#> [1] 2 4 6 8

• Concatenate multiple vectors:
vector1 <- c(1, 2, 3)
vector2 <- c(4, 5, 6)

combined <- c(vector1, vector2)
combined

#> [1] 1 2 3 4 5 6

• Combine mixed data types:
mixed <- c(10, "Apple", TRUE)
mixed

#> [1] "10" "Apple" "TRUE"

Use Case

All elements are coerced to the same data type (character in this case). Use c() to
append data, merge multiple vectors, or build vectors from scratch.

59

2.5.4.3 seq() Function - Custom Sequence Generation

The seq() function allows for more flexible sequence generation compared to the : operator.
You can specify the step size or desired length of the sequence.

Syntax:

seq(from, to, by, length)

Where:

• from: The starting value of the sequence.

• to: The ending value of the sequence.

• by: The increment (step size) between values. Defaults to 1 if not specified.

• length: The desired number of elements in the sequence. Overrides by if specified.

Examples:

• Generate a sequence with a positive step size:
custom_step <- seq(1, 10, by = 2)
custom_step

#> [1] 1 3 5 7 9

• Generate a sequence with a negative non-integer step size:
descending <- seq(5, 1, by = -0.5)
descending

#> [1] 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

• Generate a sequence of a specific length:
custom_length <- seq(1, 10, length = 5)
custom_length

#> [1] 1.00 3.25 5.50 7.75 10.00

Use Case

The seq() function is perfect for creating sequences with integer (non-integer) steps or
evenly spaced data points.

60

2.5.4.4 rep() Function - Value Replication

The rep() function replicates values multiple times, creating patterns or duplications as
needed.

Syntax:

rep(x, times, each)

Where:

• x: The vector or value to be replicated.

• times: The number of times to repeat the entire vector.

• each: The number of times to repeat each element of the vector.

Examples:

• Repeat a value multiple times:
rep("God is good!", 5)

#> [1] "God is good!" "God is good!" "God is good!" "God is good!"
#> [5] "God is good!"

• Repeat a vector multiple times:
rep(1:3, times = 2)

#> [1] 1 2 3 1 2 3

• Repeat each element of a vector:
rep(c("Female", "Male"), each = 2)

#> [1] "Female" "Female" "Male" "Male"

Use Case

Use rep() to generate repetitive patterns for simulation, modeling, or experimental data.

61

2.5.4.5 sample() Function - Random Sampling

The sample() function generates random samples from a vector, with or without replace-
ment.

Syntax:

sample(x, size, replace = FALSE, prob = NULL)

Where:

• x: The vector to sample from.

• size: The number of samples to draw.

• replace: Logical; whether sampling is with replacement (TRUE) or without replacement
(FALSE).

• prob: A vector of probabilities for each element in x.

Examples:

• Random sample without replacement:
fruit <- c("Apple", "Banana", "Cherry", "Orange", "Pineapples", "Grape", "Pawpaw")

sample(x = fruit, size = 4)

#> [1] "Grape" "Orange" "Banana" "Pawpaw"

Example output; results vary due to randomness

• Random sample with replacement:
sample(1:10, 5, replace = TRUE)

#> [1] 1 9 7 6 7

Example output; results vary due to randomness

Set a Seed for Reproducibility

When you perform random sampling in R, the results may vary each time you run the code.
By using set.seed(), you ensure that the random number generator starts from the same
point, producing consistent results every time the code is executed.

Examples

62

Set a seed for consistent results
set.seed(123)

Generate a random sample of 5 numbers
sample(1:10, 5)

#> [1] 3 10 2 8 6

This output will always be the same with set.seed(123)

• Weighted Sampling:

Weighted sampling is a method of random sampling where each element in the population
is assigned a probability of being selected. These probabilities, or weights, determine the
likelihood of an element being chosen, allowing certain elements to have a higher or lower
chance of selection compared to others.

Example:

Let’s simulate 10 flips of a biased coin, where the probability of getting a Head (H) is
0.7 and the probability of a Tail(T) is 0.3.
Sample with probabilities

set.seed(1923)

coin_face <- c("H", "T") # Possible outcomes

prob <- c(0.7, 0.3) # Higher probability for "Head"

Perform weighted sampling

sampled_prob <- sample(coin_face, prob = prob, size = 10, replace = TRUE)

sampled_prob

#> [1] "H" "H" "H" "H" "T" "T" "T" "T" "T" "H"

Use Case

Use sample() for bootstrapping, simulations, or creating random subsets from data.

63

2.5.5 Vector Operations

When working with vectors, most basic operations are applied element-by-element, making it
both intuitive and efficient to transform and analyse collections of data.

2.5.5.1 Arithmetic Operations

Arithmetic operations on vectors are performed element-wise. For example, consider a vector
of product prices:

Vector of product prices in USD

product_prices <- c(19.99, 5.49, 12.89, 99.99, 49.95)

If we want to apply a 10% discount to all prices, we can multiply the entire vector by 0.9:

Apply a discount of 10% to all product prices

discounted_prices <- product_prices * 0.9

discounted_prices

#> [1] 17.991 4.941 11.601 89.991 44.955

In this example, each element in product_prices is multiplied by 0.9, producing the
discounted_prices vector.

Common Pitfall

• Data Type Coercion: Mixing data types in a vector can lead to unexpected
results.

• Tip: Ensure all elements are of the same data type to avoid automatic coercion.

2.5.5.2 Mathematical and Statistical Functions

R provides many built-in functions that operate on vectors and return summary values or
transformed vectors. These functions are vectorised, meaning they automatically apply to
every element where relevant. Examples include:

64

• sum(product_prices) – returns the sum of all prices.

• mean(product_prices) – returns the average price.

• max(product_prices) / min(product_prices) – returns the maximum or minimum
value.

• sd(product_prices) / var(product_prices) – returns the standard deviation or vari-
ance of the product prices.

• round(product_prices, digits = 1) – rounds all prices to one decimal place.

2.5.5.3 Element-wise Functions

Functions like sqrt(), log(), exp(), and abs() apply mathematically to each element:

sqrt_prices <- sqrt(product_prices)
sqrt_prices

#> [1] 4.471018 2.343075 3.590265 9.999500 7.067531

log_prices <- log(product_prices)
log_prices

#> [1] 2.995232 1.702928 2.556452 4.605070 3.911023

2.5.5.4 Sorting and Ordering

You can also sort vectors or determine the order of elements:

product_prices <- c(19.99, 5.49, 12.89, 99.99, 49.95)

sorted_prices <- sort(product_prices)
sorted_prices

#> [1] 5.49 12.89 19.99 49.95 99.99

65

2.5.5.5 Vectorised Conditional Operations with ifelse()

The ifelse() statement is a vectorised conditional function in R. It evaluates a condition for
each element of a vector, returning one value if the condition is TRUE and another value if it is
FALSE. This makes it an essential function for data transformation and analysis.

Example 1: Categorise Product Prices

Suppose we have a vector of product prices in USD, and we want to categorise them as
“Affordable” or “Expensive” based on whether they are below or above $50.

Vector of product prices in USD
product_prices <- c(30, 75, 50, 20, 100)

Categorise prices as "Affordable" or "Expensive"
price_category <- ifelse(product_prices < 50, "Affordable", "Expensive")

Print the result
price_category

#> [1] "Affordable" "Expensive" "Expensive" "Affordable" "Expensive"

Example 2: Apply a Discount for Expensive Products

If a product price is above $50, apply a 10% discount. Otherwise, keep the price unchanged.

Apply discount for products above $50
discounted_prices <- ifelse(product_prices > 50, product_prices * 0.9, product_prices)

Print the result
discounted_prices

#> [1] 30.0 67.5 50.0 20.0 90.0

2.5.6 Vector selection

To select elements of a vector, use square brackets [] with the index of the element(s). R
indexing starts at 1 (i.e. R uses 1-based indexing).

For example:

66

Weekday Monday Tuesday Wednesday Thursday Friday Saturday Sunday
index 1 2 3 4 5 6 7

Example 1

weekday <- c(
"Monday", "Tuesday", "Wednessday", "Thursday", "Friday", "Saturday", "Sunday"

)

Access the first weekday:

weekday[1]

#> [1] "Monday"

Access the second weekday:

weekday[2]

#> [1] "Tuesday"

Access multiple elements

weekday[c(2, 4)]

#> [1] "Tuesday" "Thursday"

2.5.7 Reflection Question 2.1.1

Why is it important to know that R uses 1-based indexing?

See the Solution to Reflection Question 2.1.1

In addition to selecting elements by their positions, you can select elements of a vector based
on conditions using comparison operators. This method involves creating a logical vector
of TRUE and FALSE values by applying a condition to the vector, and then using this logical
vector to index the original vector.

Example 2

Let’s start with a numeric vector representing daily temperatures:

67

Create a numeric vector of temperatures
temperatures <- c(72, 65, 70, 68, 75, 80, 78)

Select temperatures greater than 70 degrees:

Apply the condition and select elements
temperatures[temperatures > 70]

#> [1] 72 75 80 78

Explanation

• temperatures > 70 creates a logical vector: [TRUE, FALSE, FALSE, FALSE,
TRUE, TRUE, TRUE].

• temperatures[temperatures > 70] selects elements where the condition is TRUE.

Select temperature that are even.

temperatures[temperatures %% 2 == 0]

#> [1] 72 70 68 80 78

Explanation

• temperatures %% 2 computes the remainder when each temperature is divided by
2.

• temperatures %% 2 == 0 returns TRUE for even temperature.

Example 3

Using our weekday vector:

weekday <- c(
"Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday", "Sunday"

)

Select weekdays that are “Saturday” or “Sunday”:

68

Create a logical vector for the condition
is_weekend <- weekday == "Saturday" | weekday == "Sunday"

Select elements based on the condition
weekend_days <- weekday[is_weekend]

Display the result
weekend_days

#> [1] "Saturday" "Sunday"

Explanation

• weekday == "Sunday" returns [FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
TRUE].

• Using | (logical OR) combines the two conditions.

• The final logical vector is [FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE].

Selecting Weekdays (Excluding Weekends)

Create a logical vector for weekdays
is_weekday <- !(weekday %in% c("Saturday", "Sunday"))

Select elements based on the condition
weekday_days <- weekday[is_weekday]

Display the result
weekday_days

#> [1] "Monday" "Tuesday" "Wednesday" "Thursday" "Friday"

Explanation

• weekday %in% c("Saturday", "Sunday") checks if each element is in the vector
c("Saturday", "Sunday").

• The %in% operator returns [FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
TRUE].

• Using ! negates the logical vector to [TRUE, TRUE, TRUE, TRUE, TRUE, FALSE,

69

FALSE].

Code Style Guidelines

• Naming Conventions: Use descriptive variable names in snake_case.

• Indentation: Use consistent indentation for readability.

• Comments: Explain complex code with comments.

2.5.8 Exercise 2.1.1: Vector Selection

Given the monthly sales figures (in units) for a product over a year:

120, 135, 150, 160, 155, 145, 170, 180, 165, 175, 190, 200

Your Tasks:

1. Create a vector named monthly_sales containing the data.

2. Access the sales figures for March, June, and December.

3. Find the sales figures that are less than 60

4. Calculate the average sales for the first quarter (January to March).

5. Extract the sales figures for the last month of each quarter of the year

See the Solution to Exercise 2.1.1

2.5.9 Factor Vectors

Factors are a fundamental data structure in R used to represent categorical variables, where
each value belongs to a specific category or “level.” Unlike character vectors, factors store
categorical data more efficiently and are essential in statistical modeling, especially when
using functions like summary() or performing analyses that require categorical distinctions.

2.5.9.1 Why Use Factors?

• Statistical Modeling: Factors are crucial in statistical modeling as they explicitly desig-
nate categorical variables, allowing R’s modeling functions to handle them appropriately.

• Efficient Storage: Factors store categorical data more efficiently than character vectors
by using integer codes under the hood.

70

• Data Integrity: By restricting data to predefined categories (levels), factors help maintain
data integrity and reduce errors due to invalid entries.

• Using Factors in Plots: Factors are particularly useful when creating plots, as they allow
for meaningful ordering of categories.

2.5.9.2 Creating a Factor Vector

You can create a factor vector using the factor() function, converting a character or numeric
vector into a factor.

Example 1: Product Categories

Suppose we have a vector of product categories:

Vector of product categories
product_categories <- c(
"Electronics", "Clothing", "Electronics",
"Furniture", "Clothing", "Electronics"

)

product_categories

#> [1] "Electronics" "Clothing" "Electronics" "Furniture" "Clothing"
#> [6] "Electronics"

Converting to a factor:

Convert to factor
product_categories_factor <- factor(product_categories)

Display the factor vector
product_categories_factor

#> [1] Electronics Clothing Electronics Furniture Clothing Electronics
#> Levels: Clothing Electronics Furniture

Inspecting the Factor Levels:

levels(product_categories_factor)

71

#> [1] "Clothing" "Electronics" "Furniture"

Checking the Data Type:

class(product_categories_factor)

#> [1] "factor"

If you already have a character vector, you can convert it to a factor vector using the
as.factor() function.

Example 2: Ethnicity Categories

ethnicity <- c(
"African", "Asian", "Latin American", "African", "Latin American",
"Asian", "African", "European"

)

ethnicity_factor <- as.factor(ethnicity)

ethnicity_factor

#> [1] African Asian Latin American African
#> [5] Latin American Asian African European
#> Levels: African Asian European Latin American

Note

The levels are automatically determined and sorted alphabetically unless specified other-
wise.

2.5.9.3 Ordered Factors

Sometimes, categorical variables have a natural ordering (e.g., “Low” < “Medium” < “High”).
In such cases, you can create an ordered factor by specifying the levels in the desired order
and setting ordered = TRUE.

Example 3: Satisfaction Ratings

72

Vector of satisfaction ratings

satisfaction_ratings <- c(
"High", "Medium", "Low", "High",
"Medium", "Low", "High"

)

Create an ordered factor
satisfaction_factors <- factor(satisfaction_ratings,
levels = c("Low", "Medium", "High"),
ordered = TRUE

)

Display the ordered factor
satisfaction_factors

#> [1] High Medium Low High Medium Low High
#> Levels: Low < Medium < High

Checking the data type:

class(satisfaction_factors)

#> [1] "ordered" "factor"

2.5.9.4 Using summary() with Factors:

The summary() function provides a count of each category in a factor vector:

Summarise the satisfaction factors

summary(satisfaction_factors)

#> Low Medium High
#> 2 2 3

73

2.5.9.5 Converting Factors to Numeric Values

Be cautious when converting factors to numeric values. Direct conversion using as.numeric()
will return the internal integer codes representing the factor levels, which may not correspond
to the actual values you expect.

Incorrect Way:

Incorrect conversion
as.numeric(product_categories_factor)

#> [1] 2 1 2 3 1 2

Tip

The numbers represent the position of each level in the levels attribute, not the original
data.

Correct Way:

First, convert the factor to a character vector, then to numeric (if applicable):

Correct conversion (if levels are numeric strings)
as.numeric(as.character(product_categories_factor))

#> Warning: NAs introduced by coercion

#> [1] NA NA NA NA NA NA

Warning

This will produce NAs because the levels are not numeric strings. For factors with numeric
levels, this method works correctly.

Example with Numeric Levels:

Numeric factor example
numeric_factor <- factor(c("1", "3", "5", "2"))

Correct conversion
numeric_values <- as.numeric(as.character(numeric_factor))

numeric_values

74

#> [1] 1 3 5 2

Common Pitfalls

• Unintended Ordering: By default, factors are unordered. If your categorical
variable has a natural order, specify it using the levels argument and set ordered
= TRUE.

Ordered factor example
factor_variable <- factor(c("Low", "Medium", "High"),

levels = c("Low", "Medium", "High"),
ordered = TRUE

)

• Converting Factors: Always be cautious when converting factors to numeric
types to avoid unexpected results. Use as.character() before as.numeric() if
necessary.

• Missing Levels: If you specify levels that are not present in your data, R will
include them with a count of zero.

feedback_ratings <- c(
"Good", "Excellent", "Poor", "Fair",
"Good", "Excellent", "Fair"

)

Specifying extra levels
feedback_factors <- factor(feedback_ratings,

levels = c("Poor", "Fair", "Good", "Very Good", "Excellent"),
ordered = TRUE

)

Summarise
summary(feedback_factors)

#> Poor Fair Good Very Good Excellent
#> 1 2 2 0 2

Ensure that the levels you specify match the data or be aware that additional levels will
appear with zero counts.

75

2.5.9.6 Removing Unused Factor Levels

When working with factors in R, you might encounter situations where, after subsetting your
data, the factor levels still include categories that no longer exist in your dataset. These unused
levels can lead to misleading analyses and cluttered visualizations. To ensure that your factor
variables accurately reflect the data, it’s important to remove these unused levels. This can
be easily achieved using the droplevels() function.

Why Remove Unused Levels?

• Accurate Analysis: Statistical functions and models may misinterpret unused levels, af-
fecting results.

• Clean Visualizations: Plots and charts can display empty categories, making them con-
fusing.

• Data Integrity: Keeping only relevant levels ensures your data accurately represents the
current state.

Example 1: Removing Unused Levels from a Factor

Suppose you have a factor vector representing customer feedback ratings:

Original factor with all levels
feedback_ratings <- c(
"Good", "Excellent", "Poor",
"Fair", "Good", "Excellent", "Fair"

)

feedback_factors <- factor(feedback_ratings,
levels = c("Poor", "Fair", "Good", "Excellent"),
ordered = TRUE

)

Display the original factor
feedback_factors

#> [1] Good Excellent Poor Fair Good Excellent Fair
#> Levels: Poor < Fair < Good < Excellent

Now, you decide to exclude the “Poor” ratings from your analysis:

76

Subset the data to exclude "Poor" ratings
subset_feedback <- feedback_factors[feedback_factors != "Poor"]

Display the subsetted factor
subset_feedback

#> [1] Good Excellent Fair Good Excellent Fair
#> Levels: Poor < Fair < Good < Excellent

Observation

Even after subsetting, the level “Poor” remains in the levels attribute, despite not being
present in the data.

Using droplevels() to Remove Unused Levels

To clean up the factor and remove any levels that are no longer used, apply the droplevels()
function:

Remove unused levels
subset_feedback <- droplevels(subset_feedback)

Display the cleaned factor
subset_feedback

#> [1] Good Excellent Fair Good Excellent Fair
#> Levels: Fair < Good < Excellent

Now, the factor levels accurately reflect only the categories present in the data.

Check the levels of the cleaned factor
levels(subset_feedback)

#> [1] "Fair" "Good" "Excellent"

Note

Always Check Levels After Subsetting: It’s good practice to check the levels of
your factor variables after any subsetting operation.

77

Check levels before and after dropping unused levels
levels(feedback_factors)

#> [1] "Poor" "Fair" "Good" "Excellent"

levels(subset_feedback)

#> [1] "Fair" "Good" "Excellent"

Apply droplevels() to Data Frames: If your data frame contains factor columns
and you’ve performed row-wise subsetting, you can apply droplevels() to the entire
data frame to clean all factor columns at once.

Assuming 'df' is your data frame
df_clean <- droplevels(df)

Use in Modeling and Visualization: Clean factor levels ensure that statistical models
and plots accurately represent your data without misleading categories.

2.5.10 Reflection Question 2.1.2

• How does converting character vectors to factors benefit data analysis in R?

• When would you use a factor instead of a character vector in R?

See the Solution to Reflection Question 2.1.2

2.5.11 Practice Quiz 2.1

Question 1:

Which function is used to create a vector in R?

a) vector()

b) c()

c) list()

d) data.frame()

78

Question 2:

Given the vector:

v <- c(2, 4, 6, 8, 10)

What is the result of v * 3?

a) c(6, 12, 18, 24, 30)

b) c(2, 4, 6, 8, 10, 3)

c) c(6, 12, 18, 24)

d) An error occurs

Question 3:

In R, is the vector c(TRUE, FALSE, TRUE) considered a numeric vector?

a) True
b) False

Question 4:

What will be the output of the following code?

numbers <- c(1, 3, 5, 7, 9)
numbers[2:4]

a) 1, 3, 5

b) 3, 5, 7

c) 5, 7, 9

d) 2, 4, 6

Question 5:

Which of the following best describes a factor in R?

a) A numerical vector

b) A categorical variable with predefined levels

79

c) A two-dimensional data structure

d) A list of vectors

Question 6:

Which function is used to create sequences including those with either integer or non-integer
steps?

a) :

b) seq()

c) rep()

d) sample()

Question 7:
What does the following code output?

seq(10, 1, by = -3)

a) 10, 7, 4, 1

b) 10, 7, 4

c) 1, 4, 7, 10

d) An error occurs

Question 8:

Suppose you want to create a vector that repeats the sequence 1, 2, 3 five times. Which
code will achieve this?

a) rep(c(1, 2, 3), each = 5)

b) rep(c(1, 2, 3), times = 5)

c) rep(1:3, times = 5)

d) rep(1:3, each = 5)

80

Question 9:

Suppose you are drawing coins from a treasure chest. There are 100 coins in this chest: 20 gold,
30 silver, and 50 bronze. Use R to draw 5 random coins from the chest. Use set.seed(50)
to ensure reproducibility.

What will be the output of the random draw?

a) Silver, Bronze, Bronze, Bronze, Silver
b) Gold, Gold, Silver, Bronze, Bronze

c) Gold, Bronze, Bronze, Bronze, Silver

d) Silver, Bronze, Gold, Bronze, Bronze

Question 10:

What will the following code produce?

c(1, 2, 3) + c(4, 5)

a) 5, 7, 8

b) 5, 7, 7

c) An error due to unequal vector lengths

d) 5, 7, 9

See the Solution to Quiz 2.1

2.5.12 Exercise 2.1.2: Vector and Factor Manipulation

Given a vector of customer feedback ratings: c("Good", "Excellent", "Poor", "Fair",
"Good", "Excellent", "Fair")

Your Tasks:

1. Create a vector named feedback_ratings containing the data.

2. Convert feedback_ratings into an ordered factor with levels: “Poor” < “Fair” < “Good”
< “Excellent”.

3. Summarize the feedback ratings.

4. Identify how many customers rated “Excellent”.

See the Solution to Exercise 2.1.2

81

2.6 Experiment 2.2: Matrices

A matrix is a two-dimensional data structure consisting of a rectangular array of elements
of the same data type, organized into rows and columns. Matrices are used extensively in
linear algebra and statistical computations. Figure 2.3 illustrates a typical representation of a
matrix.

Figure 2.3: Matrix Representation in Linear Algebra

2.6.1 Creating Matrices

To create a matrix, use the matrix() function:

#|
matrix(data, nrow, ncol, byrow = FALSE)

where:

• data: The elements to be arranged in the matrix.

• nrow: The number of rows.

• ncol: The number of columns.

• byrow: If set to FALSE (the default), fills the matrix by columns; if set to TRUE, fills the
matrix by rows.

Create the matrix A:

82

𝐴 = ⎛⎜
⎝

1 −2 5
−3 9 4
5 0 6

⎞⎟
⎠

A <- matrix(c(1, -2, 5, -3, 9, 4, 5, 0, 6), nrow = 3, ncol = 3, byrow = TRUE)

print(A)

#> [,1] [,2] [,3]
#> [1,] 1 -2 5
#> [2,] -3 9 4
#> [3,] 5 0 6

Create the matrix B:

𝐵 = ⎛⎜
⎝

2 −8 14
4 10 16
6 12 18

⎞⎟
⎠

B <- matrix(c(2, 4, 6, -8, 10, 12, 14, 16, 18), nrow = 3, ncol = 3, byrow = FALSE)

print(B)

#> [,1] [,2] [,3]
#> [1,] 2 -8 14
#> [2,] 4 10 16
#> [3,] 6 12 18

2.6.2 Matrices slicing

Accessing elements in a matrix is done by using [row, column], between the square brackets,
you indicate the position of the row and column in which the elements to access are. For
example, to access the element in the first row and second column of matrix A, you type A[1,
2]. To access the element in the third row and second column of matrix A, you type A[3,
2].

A[1, 2] # Element in first row, second column

#> [1] -2

83

A[3, 2] # Element in third row, second column

#> [1] 0

2.6.3 Arithmetic Operation in Matrices

You can perform arithmetic operations on matrices. Consider the following matrices

𝐴 = ⎛⎜
⎝

1 −2 5
−3 9 4
5 0 6

⎞⎟
⎠

𝐵 = ⎛⎜
⎝

2 −8 14
4 10 16
6 12 18

⎞⎟
⎠

A <- matrix(c(1, -3, 5, -2, 9, 0, 5, 4, 6), nrow = 3, ncol = 3, byrow = FALSE)

B <- matrix(c(2, 4, 6, 8, 10, 12, 14, 16, 18), nrow = 3, ncol = 3, byrow = FALSE)

Addition

A + B

#> [,1] [,2] [,3]
#> [1,] 3 6 19
#> [2,] 1 19 20
#> [3,] 11 12 24

Multiplication

Matrix multiplication is done using %*% operator:

A %*% B

#> [,1] [,2] [,3]
#> [1,] 24 48 72
#> [2,] 54 114 174
#> [3,] 46 112 178

84

2.6.4 Exercise 2.2.1: Matrix Transpose

Consider the following matrix 𝐴:

𝐴 = (1 3 5
2 4 6)

Your Task:

Find the transpose of matrix 𝐴, denoted as 𝐴𝑇 .

Tip

Define matrix 𝐴, then use t(A) to find its transpose.

Here’s a starting point for your code:

Define matrix A

A <- matrix(c(...), nrow = ..., ncol = ..., byrow = TRUE)

A_transpose <- ...(A)

Replace the ... with the correct values and complete the exercise!

See the Solution to Exercise 2.2.1

2.6.5 Exercise 2.2.2: Matrix Inverse Multiplication

Given the matrices 𝐴 and 𝐵 below:

𝐴 = (4 7
2 6)

𝐵 = (3 5
1 2)

Your Task:

Calculate 𝐴−1 × 𝐵, where 𝐴−1 is the inverse of matrix 𝐴.

Hint:

85

• Use the solve() function in R to find the inverse of matrix 𝐴.

• Use the matrix multiplication operator %*% to multiply 𝐴−1 by 𝐵.

Here’s a starting point for your code:

Define matrices A and B
A <- matrix(c(...), nrow = ..., ncol = ..., byrow = TRUE)
B <- matrix(c(...), nrow = ..., ncol = ..., byrow = TRUE)

Find the inverse of A
A_inverse <- solve(A)

Multiply A_inverse by B
result <- A_inverse %*% B

Replace the ... with the correct values for your matrices and complete the exercise!

See the Solution to Exercise 2.2.2

2.6.6 Real-World Data Scenario: Sales Data Matrix

Suppose we have sales data for three products over four regions.

Sales data (units sold)

sales_data <- c(500, 600, 550, 450, 620, 580, 610, 490, 530, 610, 570, 480)

Create a matrix

sales_matrix <- matrix(sales_data, nrow = 4, ncol = 3, byrow = TRUE)

colnames(sales_matrix) <- c("Product_A", "Product_B", "Product_C")

rownames(sales_matrix) <- c("Region_1", "Region_2", "Region_3", "Region_4")

sales_matrix

#> Product_A Product_B Product_C
#> Region_1 500 600 550
#> Region_2 450 620 580
#> Region_3 610 490 530
#> Region_4 610 570 480

86

Addition and Subtraction:

Assume a competitor's sales matrix
competitor_sales <- matrix(
c(

480, 590, 540, 430, 610, 570,
600, 480, 520, 600, 560, 470

),
nrow = 4, ncol = 3, byrow = TRUE

)

competitor_sales

#> [,1] [,2] [,3]
#> [1,] 480 590 540
#> [2,] 430 610 570
#> [3,] 600 480 520
#> [4,] 600 560 470

Calculate the difference in sales

sales_difference <- sales_matrix - competitor_sales
sales_difference

#> Product_A Product_B Product_C
#> Region_1 20 10 10
#> Region_2 20 10 10
#> Region_3 10 10 10
#> Region_4 10 10 10

Matrix Multiplication:

Price per product
prices <- c(20, 15, 25)

Calculate total revenue per region

revenue_per_region <- sales_matrix %*% prices
revenue_per_region

87

#> [,1]
#> Region_1 32750
#> Region_2 32800
#> Region_3 32800
#> Region_4 32750

Accessing Elements:

Sales of Product_B in Region_2
sales_matrix["Region_2", "Product_B"] # Returns 580

#> [1] 620

All sales for Product_C
sales_matrix[, "Product_C"]

#> Region_1 Region_2 Region_3 Region_4
#> 550 580 530 480

Common Pitfall

• Dimension Mismatch:

– Tip: Ensure that the number of columns in the first matrix matches the
number of rows in the second for multiplication.

2.6.7 Reflection Question 2.2.1

• In what scenarios would using a matrix be more advantageous than a data frame?

2.6.8 Practice Quiz 2.2

Question 1:

Which R function is used to find the transpose of a matrix?

a) transpose()

b) t()

88

c) flip()

d) reverse()

Question 2:

Given the matrix:

A <- matrix(1:6, nrow = 2, byrow = TRUE)

what is the value of A[2, 3]?

a) 3

b) 6

c) 5

d) 4

Question 3:

Matrix multiplication in R can be performed using the * operator.

a) True

b) False

Question 4:

What will be the result of adding two matrices of different dimensions in R?

a) R will perform element-wise addition up to the length of the shorter matrix.

b) An error will occur due to dimension mismatch.

c) R will recycle elements of the smaller matrix.

d) The matrices will be concatenated.

Question 5:

Which function can be used to calculate the sum of each column in a matrix M?

a) rowSums(M)

b) colSums(M)

89

c) sum(M)

d) apply(M, 2, sum)

Question 6:

Which function is used to create a matrix in R?

a) matrix()

b) data.frame()

c) c()

d) list()

See the Solution to Quiz 2.2

2.6.9 Exercise 2.2.3: Matrix Operations

Using the sales_matrix from the example in Section 2.6.6:

1. Calculate the total units sold per product.
2. Find the average units sold across all regions for Product_A.
3. Identify the region with the highest sales for Product_C.

See the Solution to Exercise 2.2.3

2.7 Experiment 2.3: Data frame

A data frame is a two-dimensional data structure. It resembles a table, where variables are
represented as columns, and observations are rows—much like a spreadsheet or a SQL table.
Data frames allow you to store columns of different data types (e.g., numeric, character, logical),
making them ideal for real-world datasets.

2.7.1 Creating a Data Frame

To create a data frame, use the data.frame() function.

Example 1: Sales Transactions Data Frame

90

Sample sales transactions
transaction_id <- 1:5

product <- c("Product_A", "Product_B", "Product_C", "Product_A", "Product_B")

quantity <- c(2, 5, 1, 3, 4)

price <- c(19.99, 5.49, 12.89, 19.99, 5.49)

total_amount <- quantity * price

sales_transactions <- data.frame(
transaction_id, product, quantity, price,
total_amount

)

sales_transactions

#> transaction_id product quantity price total_amount
#> 1 1 Product_A 2 19.99 39.98
#> 2 2 Product_B 5 5.49 27.45
#> 3 3 Product_C 1 12.89 12.89
#> 4 4 Product_A 3 19.99 59.97
#> 5 5 Product_B 4 5.49 21.96

Notice the row numbers (1 2 3 4 5) displayed on the left of the console output—these are
row labels. Each column in a data frame is internally represented as a vector.

Example 2: COVID 19 Data Frame

You can create a data frame for COVID-19 statistics with columns such as states,
confirmed_cases, recovered_cases, and death_cases:

states <- c("Lagos", "FCT", "Plateau", "Kaduna", "Rivers", "Oyo")

confirmed_cases <- c(58033, 19753, 9030, 8998, 7018, 6838)

recovered_cases <- c(56990, 19084, 8967, 8905, 6875, 6506)

death_cases <- c(439, 165, 57, 65, 101, 123)

covid_19 <- data.frame(states, confirmed_cases, recovered_cases, death_cases)

91

covid_19

#> states confirmed_cases recovered_cases death_cases
#> 1 Lagos 58033 56990 439
#> 2 FCT 19753 19084 165
#> 3 Plateau 9030 8967 57
#> 4 Kaduna 8998 8905 65
#> 5 Rivers 7018 6875 101
#> 6 Oyo 6838 6506 123

2.7.2 Exploring Data Frames

R provides several functions to quickly explore the structure and content of data frame (df):

1. head(df): Displays the first few rows.

2. tail(df): Displays the last few rows.

Both functions also include a “header”, showing the variable names in the data frame‘.

3. str(df): Shows the structure of the data frame, including:

• Number of observations (rows) and variables (columns).

• Variable names and data types.

• A preview of the data in each column.

4. names(df): Lists the names of the columns.

5. nrow(df): Returns the number of rows.

6. ncol(df): Returns the number of columns.

7. dim(df): Returns the dimensions (rows and columns) as a vector.

8. View(df): Opens a spreadsheet-style viewer in RStudio.

9. summary(df): Provides summary statistics for all columns.

Example: Medical Data Frame

Consider the following vectors:

92

set.seed(2021) # Ensures reproducibility

gender <- sample(c("Male", "Female"), 120, replace = TRUE)

height <- floor(rnorm(n = 120, mean = 3, sd = 0.5))

weight <- ceiling(rnorm(n = 120, mean = 55, sd = 9))

bmi <- weight / height^2

medical_data <- data.frame(gender, height, weight, bmi)

Exploring the Medical Data Frame

First six observations:

head(medical_data)

#> gender height weight bmi
#> 1 Male 3 47 5.222222
#> 2 Female 2 46 11.500000
#> 3 Female 3 58 6.444444
#> 4 Female 2 64 16.000000
#> 5 Male 3 62 6.888889
#> 6 Female 2 53 13.250000

Last six observations:

tail(medical_data) # To get the last 6 observation

#> gender height weight bmi
#> 115 Male 2 54 13.500000
#> 116 Male 3 66 7.333333
#> 117 Male 3 57 6.333333
#> 118 Male 3 49 5.444444
#> 119 Male 2 51 12.750000
#> 120 Female 3 51 5.666667

Column names:

93

names(medical_data)

#> [1] "gender" "height" "weight" "bmi"

You can also use:

colnames(medical_data)

#> [1] "gender" "height" "weight" "bmi"

View the data in RStudio (interactive):

View(medical_data)

Figure 2.4: Data Frame Preview in RStudio: Gender, Height, Weight, and BMI

Descriptive statistics:

94

summary(medical_data)

#> gender height weight bmi
#> Length:120 Min. :1.000 Min. :37.00 Min. : 2.375
#> Class :character 1st Qu.:2.000 1st Qu.:50.00 1st Qu.: 6.333
#> Mode :character Median :2.000 Median :56.00 Median :11.000
#> Mean :2.433 Mean :55.58 Mean :12.384
#> 3rd Qu.:3.000 3rd Qu.:62.00 3rd Qu.:14.312
#> Max. :4.000 Max. :78.00 Max. :63.000

2.7.3 Built-in Datasets

R comes with a variety of built-in datasets that you can use for learning, testing, or exploring
data analysis techniques. To view the available datasets, use the following command:

data()

This will open a list of all the datasets available in the datasets package. The datasets
package provides a variety of datasets on different topics, such as biology, finance, and historical
events. Figure 2.5 is an example output showing some of these datasets:

Figure 2.5: Sample Datasets Available in the R ‘datasets’ Package

95

2.7.3.1 Loading and Previewing Datasets

You can load and preview built-in datasets simply by calling their names. For example:

head(iris)

#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa

This displays the first six rows of the iris dataset, which contains measurements of iris
flowers.

head(airquality)

#> Ozone Solar.R Wind Temp Month Day
#> 1 41 190 7.4 67 5 1
#> 2 36 118 8.0 72 5 2
#> 3 12 149 12.6 74 5 3
#> 4 18 313 11.5 62 5 4
#> 5 NA NA 14.3 56 5 5
#> 6 28 NA 14.9 66 5 6

Here, the airquality dataset provides daily air quality measurements in New York from May
to September 1973.

2.7.3.2 Getting Help on a Dataset

To learn more about a specific dataset, use the ? operator followed by the dataset name. For
example:

?airquality

96

This will bring up the documentation for the airquality dataset as shown in Figure 2.6,
which includes details about the variables, their format, and the source of the data.

Figure 2.6: Airquality Dataset Documentation in R

2.7.4 Subsetting Data Frames

Every column in a data frame has a name. You can view the column names of a data frame,
such as iris, by using the names() function:

names(iris)

#> [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
#> [5] "Species"

2.7.4.1 Using the $ Operator

To access a specific column by name, use the $ operator in the format df$colname, where df
is the name of the data frame and colname is the name of the column you want to retrieve.
This operation returns the column as a vector. For example, to extract the Sepal.Length
column from the iris data frame as a vector:

iris$Sepal.Length

#> [1] 5.0 6.0 5.0 5.7 4.9 6.7 6.3 4.8 7.7 5.8 7.3 5.2 6.3 5.0 5.1 5.6 7.7 6.9
#> [19] 6.1 7.6

97

Similarly, to access the Species column:

iris$Species

#> [1] setosa versicolor virginica setosa virginica setosa
#> [7] versicolor setosa versicolor setosa virginica versicolor
#> [13] setosa virginica setosa versicolor virginica setosa
#> [19] setosa versicolor
#> Levels: setosa versicolor virginica

Note

For clarity and conciseness, we have shortened the output of both iris$Sepal.Length
and iris$Species in the example outputs to save space. Both methods extract their
respective columns as vectors.

Since the $ operator produces a vector, you can directly apply vector-based functions, such as
mean(), sd(), or table(), to perform calculations on the column data.

For example:

• To compute the mean of Sepal.Length:

mean(iris$Sepal.Length)

#> [1] 5.843333

• To find the frequency of each Species:

table(iris$Species)

#>
#> setosa versicolor virginica
#> 50 50 50

98

2.7.4.2 Using [row, column] Notation

You can also subset data frames using [row, column], similar to matrices. In this syntax:

• The row argument specifies which rows to extract.

• The column argument specifies which columns to extract.

Here are some common examples and their interpretations, summarized in Table 2.2 below:

Table 2.2: Data Frame Slicing in R

Data Frame Slicing Interpretation
data[1,] First row and all columns
data[, 2] All rows and second column
data[c(1, 3, 5), 2] Rows 1, 3, 5 and column 2 only
data[1:3, c(1, 3)] First three rows and columns 1 and 3 only
data or data[,] All rows and all columns

Reflection Question 2.3.1

How does subsetting data frames help in data analysis?

Common Pitfalls

• Undefined Columns Selected:

– Tip: Use names(df) to verify column names before subsetting.

• Incorrect Data Types:

– Tip: Check data types with str(df) and convert if necessary.

2.7.5 Practice Quiz 2.3

Question 1:

Which function would you use to view the structure of a data frame, including its data types
and a preview of its contents?

a) head()

b) str()

99

c) summary()

d) names()

Question 2:

How do you access the third row and second column of a data frame df?

a) df[3, 2]

b) df[[3, 2]]

c) df$3$2

d) df(3, 2)

Question 3:

In a data frame, all columns must contain the same type of data.

a) True

b) False

Question 4:

Which of the following commands would open a spreadsheet-style viewer of the data frame df
in RStudio?

a) View(df)

b) view(df)

c) inspect(df)

d) display(df)

Question 5:

What does the summary() function provide when applied to a data frame?

a) Only the first few rows of the data frame.

b) Descriptive statistics for each column.

c) The structure of the data frame including data types.

100

d) A visual plot of the data.

Question 6:

In a data frame, all columns must be of the same data type.

a) True

b) False

See the Solution to Quiz 2.3

2.7.6 Exercise 2.3.1: Subsetting a Dataframe

Using the built-in airquality dataset, complete the following tasks:

• Examine the airquality dataset.

• Select the first three columns.

• Select rows 1 through 3 and columns 1 and 3.

• Select rows 1 through 5 and column 1.

• Select the first row.

• Select the first six rows.

See the Solution to Exercise 2.3.1

2.7.7 Exercise 2.3.2: Data Frame Manipulation

Using the sales_transactions data frame:

Sample sales transactions
transaction_id <- 1:5

product <- c("Product_A", "Product_B", "Product_C", "Product_A", "Product_B")

quantity <- c(2, 5, 1, 3, 4)

price <- c(19.99, 5.49, 12.89, 19.99, 5.49)

total_amount <- quantity * price

sales_transactions <- data.frame(

101

transaction_id, product, quantity,
price, total_amount

)

sales_transactions

#> transaction_id product quantity price total_amount
#> 1 1 Product_A 2 19.99 39.98
#> 2 2 Product_B 5 5.49 27.45
#> 3 3 Product_C 1 12.89 12.89
#> 4 4 Product_A 3 19.99 59.97
#> 5 5 Product_B 4 5.49 21.96

1. Add a new column discounted_price that applies a 10% discount to price.

2. Filter transactions where the total_amount is greater than $50.

3. Calculate the average total_amount for Product_B.

See the Solution to Exercise 2.3.2

2.8 Experiment 2.4: Lists

A list is an R object that can contain elements of different types—numbers, strings, vectors,
and even other lists. It’s basically a container that can hold many different kinds of data
structures.

You are already familiar with the notion of dimensions, such as the rows and columns in
matrices and data frames. Unlike matrices or data frames, lists do not have the same concept
of rows and columns. Instead, they are regarded as one-dimensional because they essentially
consist of a sequence of items. You can think of it like a box full of different objects, all lined
up one after the other.

2.8.1 Creating a List

To create a list, use the list() function:

Customer Profile

customer_profile <- list(
customer_id = 1001,

102

name = "Johnny Drille",
purchase_history = sales_transactions, # A data frame in Exercise 2.3.2
loyalty_member = TRUE

)

customer_profile

#> $customer_id
#> [1] 1001
#>
#> $name
#> [1] "Johnny Drille"
#>
#> $purchase_history
#> transaction_id product quantity price total_amount
#> 1 1 Product_A 2 19.99 39.98
#> 2 2 Product_B 5 5.49 27.45
#> 3 3 Product_C 1 12.89 12.89
#> 4 4 Product_A 3 19.99 59.97
#> 5 5 Product_B 4 5.49 21.96
#>
#> $loyalty_member
#> [1] TRUE

Here, customer_profile consists of four components:

• customer_id: Numeric value.

• name: Character string.

• purchase_history: Data frame

• loyalty_member: Logical value.

To check how many elements are in a list, you can use the length() function. For instance:

length(customer_profile)

#> [1] 4

103

2.8.2 Accessing List Elements

To show the contents of a list you can simply type its name as any other object in R:

customer_profile

#> $customer_id
#> [1] 1001
#>
#> $name
#> [1] "Johnny Drille"
#>
#> $purchase_history
#> transaction_id product quantity price total_amount
#> 1 1 Product_A 2 19.99 39.98
#> 2 2 Product_B 5 5.49 27.45
#> 3 3 Product_C 1 12.89 12.89
#> 4 4 Product_A 3 19.99 59.97
#> 5 5 Product_B 4 5.49 21.96
#>
#> $loyalty_member
#> [1] TRUE

• Using $ Operator:
The $ operator is used to access elements of a list by their names. This method is
straightforward and commonly used when you know the exact name of the element you
want to access.
customer_profile$name

#> [1] "Johnny Drille"

• Using Double Square Brackets [[]]:
Double square brackets [[]] are used to extract elements from a list by their position
(index) or name.
customer_profile[[1]]

#> [1] 1001

customer_profile[["customer_id"]]

#> [1] 1001

104

• Using single square brackets []:
Using single square brackets [] returns a list containing the element:
customer_profile[1]

#> $customer_id
#> [1] 1001

customer_profile["customer_id"]

#> $customer_id
#> [1] 1001

• Accessing Data Frame within List:
When a list contains a data frame (or another list), you can access elements within that
data frame by chaining the $ operator or using a combination of [[]] and $.
Access the 'product' column in 'purchase_history'
customer_profile$purchase_history$product

#> [1] "Product_A" "Product_B" "Product_C" "Product_A" "Product_B"

Access the amount of the second purchase
second_purchase_amount <- customer_profile$purchase_history$total_amount[2]

print(second_purchase_amount)

#> [1] 27.45

Reflection Question 2.4.1

• How can lists be used to organize complex data structures in R?

Common Pitfalls

• Incorrect Indexing:

– Tip: Remember that [] returns a sublist, while [[]] returns the element
itself.

2.8.3 Practice Quiz 2.4

Question 1:

Which function is used to create a list in R?

105

a) c()

b) list()

c) data.frame()

d) matrix()

Question 2:

Given the list:

L <- list(a = 1, b = "text", c = TRUE)

how would you access the element "text"?

a) L[2]

b) L["b"]

c) L$b

d) Both b) and c)

Question 3:

Using single square brackets [] to access elements in a list returns the element itself, not a
sublist.

a) True

b) False

Question 4:

How can you add a new element named d with value 3.14 to the list L?

a) L$d <- 3.14

b) L["d"] <- 3.14

c) L <- c(L, d = 3.14)

d) All of the above

106

Question 5:

What will be the result of length(L) if

L <- list(a = 1, b = "text", c = TRUE, d = 3.14)?

a) 3

b) 4

c) 1

d) 0

See the Solution to Quiz 2.4

2.8.4 Exercise 2.4.1: Working with Lists

Create a list named product_details that contains:

• Product ID: 501
• Name: “Wireless Mouse”
• Specifications: A list containing color, battery_life, and connectivity
• In Stock: TRUE

Access each element individually and the nested list.

See the Solution to Exercise 2.4.1

2.9 Experiment 2.5: Arrays

An array is a data structure used for storing data in more than two dimensions. It’s a bit
like a matrix (which is two-dimensional), but arrays can extend to three dimensions or even
more. In an array, all the elements must be of the same type (for example, all numeric or all
character).

107

2.9.1 Creating Arrays

To create an array, use the array() function:

#|
array(data, dim = c(...), dimnames = NULL)

Where:

• data: The elements to be arranged in the array (all of the same type).

• dim: A vector specifying the dimensions of the array. For example, c(2, 3, 4) would
create a three-dimensional array with dimensions 2 × 3 × 4.

• dimnames: An optional argument where you can provide names for each dimension.

Example: Monthly Sales Data

Suppose we have sales data (in units sold) for two products across three regions over four
months.

Sales data for 2 products, across 3 regions, over 4 months

sales_vector <- c(
50, 60, 55, 70, # Product A, Region 1, 4 months
45, 52, 63, 65, # Product A, Region 2, 4 months
80, 75, 70, 85, # Product A, Region 3, 4 months
90, 95, 88, 92, # Product B, Region 1, 4 months
55, 57, 59, 58, # Product B, Region 2, 4 months
72, 78, 85, 80 # Product B, Region 3, 4 months

)

Creating the 3D array (2 x 3 x 4)
sales_array <- array(
data = sales_vector,
dim = c(2, 3, 4),
dimnames = list(

Product = c("A", "B"),
Region = c("North", "East", "West"),
Month = c("Jan", "Feb", "Mar", "Apr")

)
)

Viewing the array
sales_array

108

#> , , Month = Jan
#>
#> Region
#> Product North East West
#> A 50 55 45
#> B 60 70 52
#>
#> , , Month = Feb
#>
#> Region
#> Product North East West
#> A 63 80 70
#> B 65 75 85
#>
#> , , Month = Mar
#>
#> Region
#> Product North East West
#> A 90 88 55
#> B 95 92 57
#>
#> , , Month = Apr
#>
#> Region
#> Product North East West
#> A 59 72 85
#> B 58 78 80

Note

1. Data
The sales_vector contains all the numeric values we want to arrange in our array.
Here, each element represents the number of units sold.

2. Dimensions
We pass dim = c(2, 3, 4) to specify that our array will have 2 rows (for the
products), 3 columns (for the regions), and 4 “layers” (for the months).

3. Dimension Names
We optionally provide dimnames as a list of three vectors, each naming one dimen-
sion. This makes the final output more readable.

4. Result

109

The result is a 3D array in which you can access a single value or a “slice” of data
by specifying the indices (for instance, sales_array["A", "East", "Feb"]).

Arrays are particularly useful when your data naturally extends beyond two dimensions—
for instance, measuring different metrics across various categories and time periods. Just
remember that all elements in an array must be of the same type (e.g., all numeric).

2.9.2 Reflection

Reflect on how arrays differ from other data structures in R. In what scenarios might you
prefer using an array over a matrix, data frame, or list, and why?

Reflection Question 2.5.1

How does arrays differ from other data structures in R. In what scenarios might you
prefer using an array over a matrix, data frame, or list, and why?

2.10 General Practice Quiz 2

Question 1

Which function is used to create a vector in R?

a) vector()

b) c()

c) list()

d) data.frame()

Question 2

Which function is used to create a matrix in R?

a) array()

b) list()

c) matrix()

d) data.frame()

110

Question 3

Which function is used to create an array in R?

a) list()

b) matrix()

c) c()

d) array()

Question 4

Which function is used to create a list in R?

a) list()

b) c()

c) matrix()

d) data.frame()

Question 5

A matrix in R must contain elements of:

a) Multiple data types (e.g., numeric and character mixed)

b) Only character type

c) Only logical type

d) The same type (all numeric, all logical, etc.)

Question 6

An array in R can be:

a) Only two-dimensional

b) Only one-dimensional

c) Two-dimensional or higher

d) Unlimited in one dimension only

111

Question 7

A list in R is considered:

a) Two-dimensional

b) One-dimensional

c) Multi-dimensional

d) A type of matrix

Question 8

Which of the following is TRUE about a list?

a) It can only contain numeric data

b) It stores data with rows and columns by default

c) It can store multiple data types in different elements

d) It must be strictly two-dimensional

Question 9

What is the most suitable structure for storing heterogeneous data (e.g., numbers, charac-
ters, and even another data frame) in a single R object?

a) Vector

b) Matrix

c) Array

d) List

Question 10

How do we typically check the “size” of a list in R?

a) nrow()

b) length()

c) dim()

112

d) ncol()

Question 11

Which function is used to create a data frame in R?

a) data.frame()

b) array()

c) c()

d) list()

Question 12

A data frame in R:

a) Must be strictly numeric

b) Can store different data types in each column

c) Is always one-dimensional

d) Is identical to a matrix

Question 13

If you want to assign dimension names to an array, you should use:

a) rownames() only

b) colnames() only

c) dimnames()

d) names()

Question 14

When creating a matrix using:

matrix(1:6, nrow = 2, ncol = 3, byrow = TRUE)

How are the elements placed?

113

a) Filled by columns first

b) Filled by rows first

c) Randomly placed

d) Not possible to tell

Question 15

In an array with dimensions c(2, 3, 4), how many elements are there in total?

a) 12

b) 18

c) 24

d) 36

See the Solution to General Quiz 2

2.11 Reflective Summary

Congratulations on completing Lab 2! You’ve expanded your R programming skills by mas-
tering essential data structures:

• Vectors: The building blocks of data manipulation.

• Matrices: Fundamental for mathematical and statistical computations.

• Data Frames: Crucial for handling and analyzing real-world datasets.

• Lists: Versatile structures for complex data storage.

Key Takeaways:

• Understanding the appropriate data structure to use based on the data and task at hand
is crucial.

• Effective data manipulation relies on mastering indexing and subsetting techniques.

• Combining different data structures allows for more complex data analyses.

114

What’s Next?

In the next lab, you’ll explore how to write your own functions in R. Functions are
powerful tools that will help you streamline your code, automate tasks, and make your
programs more efficient.

115

3 Writing Custom Function

3.1 Introduction

Welcome to Lab 3! In this lab, we’ll explore how to write your own functions in R. Functions
are essential in programming because they allow you to encapsulate code that performs spe-
cific tasks. This makes your programs more modular, readable, and easier to maintain. By
designing custom functions, you can automate repetitive tasks, streamline your data analysis
processes, and enhance the efficiency of your code.

3.2 Learning Objectives

By the end of this lab, you will be able to:

• Understand the Syntax of Functions in R
Learn how to define functions using the function() keyword, specify arguments, and
structure the function body to perform desired operations.

• Create Custom Functions
Write your own functions to perform specific data analysis tasks, allowing you to reuse
code and avoid repetition.

• Utilize Functions to Modularize and Streamline Code
Break down complex data analysis tasks into smaller, manageable functions to make
your code more organized and maintainable.

• Understand Variable Scope Within Functions
Grasp how variable scope works in R, distinguishing between local and global variables,
and understand how this affects the behaviour of your functions.

• Apply Best Practices in Function Design
Implement best practices such as choosing meaningful function names, including docu-
mentation with comments, handling inputs and outputs effectively, and incorporating
error handling.

• Demonstrate Understanding Through Practical Application
Use the functions you create in real data analysis scenarios to show how they can simplify
tasks and improve code efficiency.

116

By completing this lab, you’ll enhance your programming skills in R, enabling you to write
code that is not only effective but also clean, reusable, and easy to understand. These skills
are fundamental for any data analysis or data science work you’ll undertake in the future.

3.3 Prerequisites

Before starting this lab, you should have:

• Completed Lab 2 or have a basic understanding of R’s data structures (vectors, matrices,
data frames, and lists).

• Familiarity with basic programming concepts (variables, loops, conditionals).

• An interest in learning how to enhance your R programming skills through custom func-
tions.

3.4 Experiment 3.1: Understanding Functions in R

A function is a block of code designed to perform a specific task. Functions usually take in
some form of data structure—like a value, vector, or dataframe—as arguments, process it, and
return a result. R has many built-in functions like mean(), sum(), and plot(), but creating
your own functions allows you to tailor operations to your specific needs. For instance, imagine
you often perform repetitive data transformations, cleaning, or statistical analysis. Writing
custom functions allows you to automate these tasks, saving time and reducing potential
errors.

Figure 3.1: Core Functions in R Programming

117

3.4.1 Types of Functions

Functions can be broadly categorized into two types:

Figure 3.2: Types of Functions in R Programming

• Built-in Functions: These are predefined functions provided by R, e.g., mean(),
print().

• User-defined Functions: These are functions created by the user to perform specific
tasks.

3.4.2 Why Write Your Own Function?

Creating your own functions has several advantages:

• Code Reusability: Functions promote code reuse and help you avoid repetition.

• Improved Readability: They make your code more readable and maintainable.

• Modular Programming: Functions allow for modular programming, where you can
break down complex tasks into smaller, manageable pieces.

3.4.3 When Should You Write a Function?

Consider writing a function when:

• You find yourself repeating code.

• You need to perform a complex calculation multiple times.

• You want to make your code more organized and maintainable.

118

3.4.4 Creating Custom Function

A function in R has three main components:

• Function Name: A descriptive name that reflects the function’s purpose.

• Function Arguments: Inputs that the function will process. This could be any type
of object—such as a scalar, matrix, dataframe, vector, or logical.

• Function Body: The code that defines what the function does.

The general structure of a function is:

#|

function_name <- function(arg1, arg2, ...) {
Function body
...
return(result)

}

Best Practice

• Naming Conventions: Use snake_case and descriptive names.

• Comments: Include comments to explain complex logic.

• Indentation: Use consistent indentation for readability.

If you create an object inside a function that you want to use outside of it, you need to
return it using the return() function.

3.4.4.1 Calling a User-defined Function in R

You can call a user-defined function just like any built-in function, using its name. If the
function accepts parameters or arguments, you pass them when calling the function.

3.4.5 Example 1: Squaring a Number

Let’s start by creating a simple function to square a number. This example will introduce you
to defining and using functions in R.

Defining the Function:

119

First, we’ll define the function square_it. This function will take a single input, x, and return
its square. Here’s how you would write it:

Function to square a number
square_it <- function(x) {
result <- x^2
return(result)

}

Now, whenever you call square_it() with a numerical input, it will output the square of that
number.

Testing the Function

To verify that the function works as expected, try squaring a few numbers:

• Test with 12:

square_it(12)

#> [1] 144

• Test with vector, product_prices:

product_prices <- c(19.99, 5.49, 12.89, 99.99, 49.95)

square_it(product_prices)

#> [1] 399.6001 30.1401 166.1521 9998.0001 2495.0025

Reflection Question

• Why is it beneficial to write a function for squaring a number instead of writing
x^2 each time?

3.4.6 Example 2: Checking for Missing Values

Next, let’s create a function that checks for missing values in a dataset and counts them.

Defining the Function

We’ll define a function called check_NA as follows:

120

Function to check for missing values
check_NA <- function(data) {
any_na <- anyNA(data)
na_count <- sum(is.na(data))
announcement <- paste("Any NA:", any_na, "| Total NA:", na_count)
return(announcement)

}

Testing the Function

You can use this function to check for missing values in various datasets.

• For the airquality dataset:

check_NA(airquality)

#> [1] "Any NA: TRUE | Total NA: 44"

• For the iris dataset:

check_NA(iris)

#> [1] "Any NA: FALSE | Total NA: 0"

Running these commands will let you know if there are any missing values in the dataset and
provide the total count of missing values.

3.5 Experiment 3.2: Advanced Function Examples

3.5.1 Example 3: Calculating the Statistical Mode

There is no built-in function in R to calculate the mode, so let’s create one.

statistical_mode <- function(x) {
Get unique values
uniqx <- unique(x)

Count frequencies of each unique value
freq <- tabulate(match(x, uniqx))

121

Find the maximum frequency
max_freq <- max(freq)

Find all values with the maximum frequency
modes <- uniqx[freq == max_freq]

Handle cases
if (length(modes) == length(uniqx)) {

return("No mode: All values occur with equal frequency.")
} else if (length(modes) > 1) {

return(list("Multiple Modes" = modes, "Frequency" = max_freq))
} else {

return(list("Mode" = modes, "Frequency" = max_freq))
}

}

Explanation

1. Unique Values:

• unique(x) extracts distinct values from the input vector.

2. Frequency Count:

• tabulate(match(x, uniqx)) counts occurrences of each unique value.

3. Maximum Frequency:

• max(freq) identifies the highest frequency.

4. Multiple Modes:

• The function checks if more than one value has the maximum frequency.

5. No Mode:

• If all unique values occur equally, the function returns a message stating there
is no mode.

This statistical_mode() function will handle every possible scenario, including:

1. Single Mode: Returns the value with the highest frequency.

2. Multiple Modes: Returns all values with the highest frequency.

3. No Mode: Returns a message if all values appear with equal frequency (no distinct
mode).

122

Testing the Function

• Test 1: Single Mode
calls <- c(
0, 2, 6, 2, 2, 0, 0, 1, 1, 5, 3, 1, 0,
2, 3, 1, 2, 1, 4, 4, 5, 0, 5, 1, 2, 2,
2, 0, 4, 0, 6

)

statistical_mode(calls)

#> $Mode
#> [1] 2
#>
#> $Frequency
#> [1] 8

• Test 2: Multiple Modes
scores <- c(5, 5, 6, 6, 7, 8)

statistical_mode(scores)

#> $`Multiple Modes`
#> [1] 5 6
#>
#> $Frequency
#> [1] 2

• Test 3: No Mode
values <- c(1, 2, 3, 4, 5)

statistical_mode(values)

#> [1] "No mode: All values occur with equal frequency."

3.5.2 Example 4: Data Frame Operation Using switch()

Suppose we have employee data and want to perform various operations based on user input.
The available operations are:

• “summary”: Get a summary of the data frame.

123

• “add_column”: Add a new column to the data frame.

• “filter”: Filter the data frame based on a specified condition.

• “group_stats”: Calculate group-wise statistics.

To follow along with this example, please refer to Chapter 1.8.5 for a detailed tutorial and
comprehensive understanding of the switch() function.

Step 1: Creating a Sample Data Frame

#|
library(tidyverse)

Sample employee data
staff_data <- data.frame(
EmployeeID = 1:6,
Name = c("Alice", "Ebunlomo", "Festus", "Othniel", "Bob", "Testimony"),
Department = c("HR", "IT", "Finance", "Data Science", "Marketing", "Finance"),
Salary = c(70000, 80000, 75000, 82000, 73000, 78000)

)

staff_data

#> EmployeeID Name Department Salary
#> 1 1 Alice HR 70000
#> 2 2 Ebunlomo IT 80000
#> 3 3 Festus Finance 75000
#> 4 4 Othniel Data Science 82000
#> 5 5 Bob Marketing 73000
#> 6 6 Testimony Finance 78000

Step 2: Defining the Function

Define the function
data_frame_operation <- function(data, operation = "filter" # or any of "summary",

"add_column", filter", "group_stats"
) {
result <- switch(operation,

Case 1: Summary of the data frame
summary = {
print("Summary of Data Frame:")

124

summary(data)
},

Case 2: Add a new column 'Bonus' which is 10% of the Salary
add_column = {
data$Bonus <- data$Salary * 0.10
print("Data Frame after adding 'Bonus' column:")
data

},

Case 3: Filter employees with Salary > 75,000
filter = {
filtered_data <- filter(data, Salary > 75000)
print("Filtered Data Frame (Salary > 75,000):")
filtered_data

},

Case 4: Group-wise average salary
group_stats = {
group_summary <- data %>%
group_by(Department) %>%
summarize(Average_Salary = mean(Salary))

print("Group-wise Average Salary:")
group_summary

},

Default case
{
print("Invalid operation. Please choose a valid option.")
NULL

}
)

Return the result
return(result)

}

Explanation:

• Function data_frame_operation:

– Parameters:

125

∗ data: The data frame to operate on.

∗ operation: A string specifying the operation to perform.

– Using switch():

∗ Each case corresponds to a specific operation.

∗ Cases that involve multiple expressions are wrapped in {}.

∗ The last expression in the block is returned as the result of the case.

∗ If no match is found, the final unnamed argument serves as the default case.

– Operations:

∗ “summary”: Provides a summary of the data frame.

∗ “add_column”: Adds a new column Bonus (10% of Salary) to the data frame.

∗ “filter”: Filters the data frame to include only employees with a salary greater
than $75,000.

∗ “group_stats”: Calculates the average salary for each department.

– Default Case: Prints an error message and returns NULL if the operation is invalid.

– Return Value: The result of the operation is returned by the function.

Step 3: Testing the Function

Let’s test the function with different operations.

Example 1: Summary of the Data Frame

Perform the 'summary' operation
data_frame_operation(staff_data, "summary")

#> [1] "Summary of Data Frame:"

#> EmployeeID Name Department Salary
#> Min. :1.00 Length:6 Length:6 Min. :70000
#> 1st Qu.:2.25 Class :character Class :character 1st Qu.:73500
#> Median :3.50 Mode :character Mode :character Median :76500
#> Mean :3.50 Mean :76333
#> 3rd Qu.:4.75 3rd Qu.:79500
#> Max. :6.00 Max. :82000

126

Example 2: Add a New Column

Perform the 'add_column' operation
data_frame_operation(staff_data, "add_column")

#> [1] "Data Frame after adding 'Bonus' column:"

#> EmployeeID Name Department Salary Bonus
#> 1 1 Alice HR 70000 7000
#> 2 2 Ebunlomo IT 80000 8000
#> 3 3 Festus Finance 75000 7500
#> 4 4 Othniel Data Science 82000 8200
#> 5 5 Bob Marketing 73000 7300
#> 6 6 Testimony Finance 78000 7800

Example 3: Filter the Data Frame

Perform the 'filter' operation
data_frame_operation(staff_data, "filter")

#> [1] "Filtered Data Frame (Salary > 75,000):"

#> EmployeeID Name Department Salary
#> 1 2 Ebunlomo IT 80000
#> 2 4 Othniel Data Science 82000
#> 3 6 Testimony Finance 78000

Example 4: Group-wise Statistics

Perform the 'group_stats' operation
data_frame_operation(staff_data, "group_stats")

#> [1] "Group-wise Average Salary:"

#> # A tibble: 5 x 2
#> Department Average_Salary
#> <chr> <dbl>
#> 1 Data Science 82000
#> 2 Finance 76500
#> 3 HR 70000
#> 4 IT 80000
#> 5 Marketing 73000

127

Example 5: Invalid Operation

Attempt an invalid operation
data_frame_operation(staff_data, "view")

#> [1] "Invalid operation. Please choose a valid option."

#> NULL

Caution

Common Pitfall:

• Missing Libraries: Forgetting to load required packages like dplyr.

• Tip: Include library() calls within the function or check if the package is in-
stalled.

3.5.3 Exercise 3.1.1: Temperature Conversion

Now, it’s your turn to create a function.

Your Task: Create a function to convert Celsius (C) to Fahrenheit (F). You can use the
formula:

F = C × 1.8 + 32
Instructions:

1. Define the Function

• Name the function celsius_to_fahrenheit.

• It should take one argument, the temperature in Celsius.

2. Implement the Formula

• Inside the function, apply the formula to convert Celsius to Fahrenheit.

3. Return the Result

• The function should return the Fahrenheit temperature.

Test Your Function:

Use your function to convert the following Celsius temperatures to Fahrenheit:

128

• 100°C

• 75°C

• 120°C

For each temperature, call your function and verify that it returns the correct Fahrenheit
value.

See the Solution to Exercise 3.1.1

3.5.4 Exercise 3.1.2: Pythagoras Theorem

Create a function to:

Your Task: Create a function called pythagoras to calculate the hypotenuse (c) of a right-
angled triangle using Pythagoras’ theorem:

𝑐 = √𝑎2 + 𝑏2

where a and b are the lengths of the other two sides.

Figure 3.3: Geometric Representation: Right-Angled Triangle

Instructions:

1. Define the Function

• Name the function pythagoras.

129

• It should take two arguments: a and b.

2. Implement the Formula

• Inside the function, calculate the hypotenuse using the Pythagorean theorem.

3. Return the Result

• The function should return the length of the hypotenuse.

Test Your Function:

Use your pythagoras function to calculate the hypotenuse for the following triangles:

• For 𝑎 = 4.1 and 𝑏 = 2.6
• For 𝑎 = 3 and 𝑏 = 4

Call your function with these values and verify that it returns the correct hypotenuse length.

See the Solution to Exercise 3.1.2

3.5.5 Exercise 3.1.3: Staff Data Manipulation Using switch()

Based on the example in Section 3.5.2, try modifying the code to include an additional opera-
tion:

• “raise_salary”: Increase the salary of all employees by 5%.

Instructions:

1. Add a new case to the switch() function for "raise_salary".

2. In this case, increase the Salary column by 5% and return the updated data frame.

3. Test the code by setting operation = "raise_salary".

Your Task:

Modify the function to include 'raise_salary' operation
data_frame_operation <- function(..., operation) {
result <- switch(operation,

Existing cases...

Case for 'raise_salary'
raise_salary = {
data$Salary <- data$Salary * ...

130

print("Data Frame after 5% salary increase:")
data

},

Default case
{
print("Invalid operation. Please choose a valid option.")
NULL

}
)

Return the result
return(...)

}

Test the New Operation

Perform the 'raise_salary' operation
data_frame_operation(staff_data, "---")

Replace the ... with the correct values and complete the exercise!

See the Solution to Exercise 3.1.3

Best Practices in Function Design

Meaningful Function Names

• Use descriptive names that convey the function’s purpose.

• Follow naming conventions (snake_case).

Handling Inputs and Outputs

• Validate input types and values.

• Provide clear and consistent return values.

Error Handling

• Use stop(), warning(), or message() to handle errors and warnings.

• Ensure that your function fails gracefully.

131

Example with Error Handling:

safe_divide <- function(a, b) {
if (b == 0) {
stop("Error: Division by zero is not allowed.")

} else {
return(a / b)

}
}

Testing the function
safe_divide(10, 2) # Returns 5

#> [1] 5

safe_divide(10, 0) # Error message

#> Error in safe_divide(10, 0): Error: Division by zero is not allowed.

Not validating inputs can lead to unexpected errors or incorrect results.

3.6 Experiment 3.3: Understanding Variable Scope

When writing a function, it’s crucial to understand how variables behave inside and outside
the function. This concept is known as variable scope. Variable scope determines where a
variable is accessible in your code and how changes to variables within the function can affect
variables outside of them.

3.6.1 Local vs. Global Variables

• Local Variables: These are variables that are defined within a function. They exist
only during the execution of that function and are not accessible outside of it.

• Global Variables: These are variables that are defined outside of any function. They
exist in the global environment and can be accessed by any part of your script, including
inside functions (unless shadowed by a local variable of the same name).

132

3.6.2 How Variable Scope Works in R

In R, each function has its own environment. This means that variables created inside a
function (local variables) do not interfere with variables outside the function (global variables),
even if they have the same name.

Example 1: Local Variable

Let’s look at an example to illustrate this:

variable_scope1 <- function() {
local_var <- "I am a local variable!"
print(local_var)

}

variable_scope1() # Prints "I am local"

#> [1] "I am a local variable!"

print(local_var) # Error: object 'local_var' not found

#> Error: object 'local_var' not found

In this example, local_var is a local variable within the variable_scope1() function. Trying
to access local_var outside the function results in an error because it doesn’t exist in the
global environment.

Example 2: Global Variable Access

Functions in R can access global variables unless there is a local variable with the same name:

global_var <- "I am global"

variable_scope2 <- function() {
print(global_var)

}

variable_scope2() # Prints "I am global"

133

#> [1] "I am global"

Here, the function variable_scope2() accesses the global variable global_var because there
is no local variable named global_var inside the function.

3.6.3 Variable Shadowing

When a local variable has the same name as a global variable, the local variable takes prece-
dence within the function.

var <- "I am global"

variable_scope3 <- function() {
var <- "I am local"
print(var)

}

variable_scope3() # Prints "I am local"

#> [1] "I am local"

print(var) # Prints "I am global"

#> [1] "I am global"

In this case, the var variable inside variable_scope3() is local and doesn’t affect the global
var variable.

Tip

Reflection Question:

• Why is it important to understand variable scope when writing functions?

Common Errors and Debugging Tips

• Syntax Errors: Check for missing commas, parentheses, or braces.

• Undefined Variables: Ensure all variables used in the function are defined.

• Incorrect Return Values: Make sure the function returns what you expect.

134

• Variable Scope Issues: Be mindful of local vs. global variables.

Debugging Tips:

• Use print() statements to check intermediate results.

• Use the debug() function to step through your function.

• Validate inputs at the start of your function.

3.6.4 Practice Quiz 3.1

Question 1:

What is the correct way to define a function in R?

a) function_name <- function { ... }

b) function_name <- function(...) { ... }

c) function_name <- function[...] { ... }

d) function_name <- function(...) [...]

Question 2:

A variable defined inside a function is accessible outside the function.

a) True

b) False

Question 3:

Which of the following is NOT a benefit of writing functions?

a) Code Reusability

b) Improved Readability

c) Increased Code Complexity

d) Modular Programming

See the Solution to Quiz 3.1

135

3.7 Summary

In this lab, you have developed essential skills in creating custom functions:

• Understanding the syntax of functions in R, including how to define functions using
the function() keyword, specify arguments, and structure the function body.

• Creating and utilizing your own custom functions to perform specific data analysis
tasks, promoting code reuse and avoiding repetition.

• Applying functions to modularize and streamline your code, breaking down complex
tasks into smaller, manageable pieces for better organization and maintainability.

• Grasping variable scope within functions, distinguishing between local and global vari-
ables, and understanding how this affects the behavior of your functions.

• Implementing best practices in function design, such as choosing meaningful function
names, including documentation with comments, handling inputs and outputs effectively,
and incorporating error handling.

These skills are fundamental for efficient programming in R and will greatly enhance your
data analysis capabilities. They form a strong foundation for more advanced topics you will
encounter as you continue learning. Congratulations on advancing your programming exper-
tise!

What’s Next?

In the next lab, we’ll delve into managing packages, creating reproducible workflows using
RStudio project, and reading data from a file.

136

4 Managing Packages and Workflows

4.1 Introduction

In Lab 4, we will explore essential practices that will enhance your efficiency and effectiveness
as an R programmer. You will discover how to extend R’s capabilities by installing and loading
packages, how to ensure that your analyses are reproducible by using RStudio Projects, and
how to proficiently import and export datasets in various formats. These skills are essential for
any data analyst or data scientist, as they enable you to work with a wide range of data sources,
maintain the integrity of your analyses, and share your work with others in a consistent and
reliable manner.

4.2 Learning Objectives

By the end of this lab, you will be able to:

• Install and Load Packages in R
Learn how to find, install, and load packages from CRAN and other repositories, thereby
extending the functionality of R for your data analysis tasks.

• Ensure Reproducibility with R and RStudio Projects
Set up and manage RStudio Projects to organise your work, understand the concept of
the working directory, and adopt best practices to make your data analyses reproducible
and shareable.

• Import and Export Datasets in Various Formats
Import data into R from different file types, such as CSV, Excel, and SPSS, using
appropriate packages and functions. Export your data frames and analysis results to
various formats for sharing or reporting.

By completing this lab, you will enhance your ability to manage and analyse data in R more
efficiently. You will also ensure that your work is organised, reproducible, and ready to share
with others. These foundational skills will support your development as a proficient R pro-
grammer and data analyst.

137

4.3 Prerequisites

Before starting this lab, you should have:

• Completed Lab 3 or have a basic understanding of writing custom functions in R.

• Familiarity with R’s data structures and basic data manipulation.

• An interest in organizing, documenting, and sharing analytical workflows efficiently.

4.4 Understanding Packages and Libraries in R

In R, a package is a collection of functions, data, and code that extends the basic functionality
of R. Think of it as a specialised toolkit for particular tasks or topics. For example, packages
like tidyr and janitor facilitate data wrangling, while others focus on graphics, modelling,
or data import and export.

A library is a location on your computer’s file system where installed packages are stored.
When you install a package, it is saved in a library so that you can easily access it in future R
sessions.

4.5 Compiling R Packages from Source

You may occasionally need additional tools to compile R packages from source, depending on
your operating system:

• Windows

Windows does not support code compilation natively. Therefore, you need Rtools, which
provides the necessary software, including compilers and libraries, to build R pack-
ages from source. You can download Rtools from CRAN: https://cran.rstudio.com/bin/
windows/Rtools/. After installing the appropriate version of Rtools, R will automatically
detect it.

Note

To check your R version, run the following code in your console:
R.version
To verify that Rtools is correctly installed, you can run the following code in your
console:
Sys.which("make")

138

https://cran.rstudio.com/bin/windows/Rtools/
https://cran.rstudio.com/bin/windows/Rtools/

• Mac OS

On macOS, you need the Xcode Command Line Tools, which provide similar capabilities
to Rtools on Windows. You can install Xcode from the Mac App Store:

http://itunes.apple.com/us/app/xcode/id497799835?mt=12 or install the Command
Line Tools directly by running:
xcode-select --install

• Linux

Most Linux distributions already come with the necessary tools for compiling packages.
If additional developer tools are needed, you can install them via your package manager,
usually by installing packages like build-essential or similar for your Linux distribu-
tion.

Note

On Debian/Ubuntu, you can install the essential software for R package develop-
ment and LaTeX (if needed for documentation) with:
sudo apt-get install r-base-dev texlive-full

To ensure all dependencies for building R itself from source are met, you can run:
sudo apt-get build-dep r-base-core

4.6 Experiment 4.1: Installing and Loading Packages

As you progress in R, you will frequently need functions that are not included in the base R
installation. These are provided by packages, which you can easily install and load into your
R environment.

4.6.1 Installing Packages from CRAN

The Comprehensive R Archive Network (CRAN) hosts thousands of packages. To install a
package from CRAN, use:

install.packages("package_name")

Note

Replace package_name with the name of the package you want to install.

139

http://itunes.apple.com/us/app/xcode/id497799835?mt=12

For example, to install the tidyverse package, use:

install.packages("tidyverse")

Similarly, to install the janitor package, use:

install.packages("janitor")

Warning

Remember to enclose the package name in quotes—either double ("package_name") or
single ('package_name').

4.6.2 Installing Packages from External Repositories

Some packages may not be available on CRAN but can be installed from GitHub or GitLab.
First, install a helper package such as devtools or remotes:

install.packages("devtools")
or
install.packages("remotes")

Then, to install a package from GitHub, for example openintro package, use:

devtools::install_github("OpenIntroStat/openintro")
or
remotes::install_github("OpenIntroStat/openintro")

You can also install development versions of packages using these helper packages. For in-
stance:

#|
remotes::install_github("datalorax/equatiomatic")

4.6.3 Loading Packages

Once a package has been installed, you need to load it into your R session to use its functions.
You can do this by calling the library() function, as demonstrated in the code cell below:

140

library(package_name)

Here, package_name refers to the specific package you want to load into the R environment.
For example, to load the tidyverse package:

library(tidyverse)

#> -- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
#> v dplyr 1.1.4 v readr 2.1.5
#> v forcats 1.0.0 v stringr 1.5.1
#> v ggplot2 3.5.1 v tibble 3.2.1
#> v lubridate 1.9.3 v tidyr 1.3.1
#> v purrr 1.0.2
#> -- Conflicts -- tidyverse_conflicts() --
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
#> i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

This command loads core tidyverse packages essential for most data analysis project1. Other
installed packages can also be loaded in such manner:

library(janitor)

library(bulkreadr)

If you run this code and get the error message there is no package called "bulkreadr", you’ll
need to first install it, then run library() once again.

install.packages("bulkreadr")

library(bulkreadr)

1It is common for a package to print out messages when you load it. These messages often include information
about the package version, attached packages, or important notes from the authors. For example, when you
load the tidyverse package. If you prefer to suppress these messages, you can use the suppressMessages()
function: suppressMessages(library(tidyverse))

141

Tip

You only need to install a package once, but you must load it each time you start a new
R session.

Figure 4.1: Installing vs. Loading Packages in R

4.6.4 Using Functions from a Package

When working with R packages, there are two primary ways to use a function from a package:

1. Load the Package and Call the Function Directly

You can load the package into your R session using the library() function, and then call the
desired function by its name. For example:

#|
Load the janitor package
library(janitor)

Use the clean_names() function
clean_names(iris)

#> # A tibble: 150 x 5
#> sepal_length sepal_width petal_length petal_width species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa

142

#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # i 140 more rows

In this approach, you only need to load the package once in your session, and then you can
use its functions without specifying the package name.

2. Use the :: Operator to Call the Function Without Loading the Package

The :: operator is used to call a function from a specific package without loading the entire
package into your R session. This is particularly useful when:

• Avoiding Namespace Conflicts: If multiple packages have functions with the same
name, :: ensures you use the correct one.

• Improving Code Clarity: It makes your code more readable by clearly indicating
which package a function comes from.

• Reducing Memory Usage: Only the specific function is accessed, not the entire
package.

The syntax is:

packageName::functionName(arguments)

where:

• packageName: The name of the package where the function resides.

• functionName: The specific function you want to use from the package.

Example

Using the double colon to access clean_names() from janitor package
janitor::clean_names(iris)

#> # A tibble: 150 x 5
#> sepal_length sepal_width petal_length petal_width species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa

143

#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # i 140 more rows

The clean_names() function, in this case, returns the iris data frame with column names
formatted in a consistent and clean style.

Tip

Ensure that the janitor package is installed before using its functions. If it’s not in-
stalled, you can install it using install.packages(“janitor”).

As shown in Table 4.1, using library() attaches the entire package, while the :: operator
allows you to call specific functions without loading the entire package. This difference can
significantly impact memory usage and clarity in your scripts, especially when you’re only
using a few functions from a large package.

Table 4.1: Comparing library() and :: Operator

Aspect library() :: Operator
Loading Behavior Attaches the entire package

to the session
Accesses specific functions
without loading the package

Namespace Conflicts Potential for conflicts if
multiple packages have
functions with the same
name

Avoids conflicts by specifying
the package

Memory Usage Loads all exported objects,
increasing memory usage

Minimal memory usage as
only specific functions are
accessed

Code Verbosity Less verbose; functions can
be called directly

More verbose; requires
prefixing with package name

Use Cases When using multiple
functions from a package
extensively

When using only a few
functions or to avoid conflicts

4.6.5 Practice Quiz 4.1

Question 1:

144

Imagine that you want to install the shiny package from CRAN. Which command should you
use?

a) install.packages("shiny")
b) library("shiny")

c) install.packages(shiny)

d) require("shiny")

Question 2:

What must you do after installing a package before you can use it in your current session?

a) Restart R

b) Run install.packages() again

c) Load it with library()

d) Convert the package into a dataset

Question 3:

If you want to install a package that is not on CRAN (e.g., from GitHub), which additional
package would be helpful?

a) installer

b) rio

c) devtools

d) github_install

Question 4:

Which function would you use to update all outdated packages in your R environment?

a) update.packages()

b) install.packages()

c) library()

d) require()

145

Question 5:

Which function can be used to check the version of an installed package?

a) version()

b) packageVersion()

c) libraryVersion()

d) install.packages()

See the Solution to Quiz 4.1

4.7 Experiment 4.2: Ensuring Reproducibility with R and RStudio
Projects

Reproducibility is vital in data science. It allows analyses to be revisited, results to be verified,
and insights to be shared seamlessly, whether with collaborators or for future reference. With
R and RStudio Projects, you can create a self-contained workspace that keeps your work
organised and reproducible.

4.7.1 Working Directory and Paths

Your working directory is where R looks for files to read and where it saves outputs. You can
find your current working directory in two ways:

1. In the Console: At the top of the RStudio console, the current working directory is
displayed.

2. Using Code: Run the following command:
getwd()

[1] "C:/Users/Ezekiel Adebayo/Desktop/stock-market"

If you’re not using an RStudio project, you’ll need to set the working directory manually
each time. For instance:
setwd("/path/to/your/data_analysis")

146

Tip

You can use the keyboard shortcut Ctrl + Shift + H in RStudio to quickly choose
your working directory.

• Absolute Paths: Start from the root of your file system (e.g., C:/Users/YourName/Documents/data.csv).
These paths are specific to your computer and should be avoided in shared scripts.

• Relative Paths: Refer to files relative to your working directory (e.g., data/data.csv).
Using relative paths ensures portability and makes your scripts easier to share and reuse.

4.7.2 RStudio Projects

RStudio Projects provide a centralised environment for all your analyses: data files, scripts,
figures, outputs, and documentation. This setup ensures your work remains organised, consis-
tent, and reproducible.

Benefits of RStudio Projects

1. Organisation
All project files are stored in one place, making it easy to navigate and manage.

2. Relative Paths
RStudio automatically sets the working directory to the project folder, allowing you to
use relative paths (e.g., data/my_data.csv). This eliminates the need for hardcoding
absolute paths, ensuring your code works on any system.

3. Consistency Across Systems
When you open your RStudio project on another computer, it recognises the same folder
structure, making your work portable and adaptable.

4. Reproducibility
With all components centralised and paths consistent, RStudio Projects enable others
to replicate your workflow effortlessly. Everything needed to reproduce your analysis is
neatly packaged and ready to go.

4.7.3 How RStudio Projects Organize Your Work

When you set up an RStudio Project, it acts as the root folder for your analysis. A recom-
mended structure is shown in Figure 4.2 below:

147

Figure 4.2: Practical Framework for Reproducible Data Analysis with RStudio Projects.

• Top-Level Files
Files like README.md provide an overview of the project, while a LICENSE file outlines
terms of use for the code and data. These files are essential for collaboration and trans-
parency.

• Data Folder (data/)
This folder contains raw data files in formats like .csv or .xlsx. Raw data is stored
here in its original state to preserve reproducibility.

• Analysis Folder (analysis/)
Scripts or dynamic documents, such as Quarto files (.qmd) or R Markdown files (.Rmd),
go here. These documents combine R code, narrative text, and visualizations, serving
as the heart of your analysis.

• Custom Functions Folder (R/)

148

Reusable R scripts containing custom functions are saved here. These can be sourced
into analysis scripts to keep your workflow modular and efficient.

This structure, combined with relative paths, ensures a clean, logical, and reproducible work-
flow.

4.7.4 Setting Up Your RStudio Project

Let’s create a new RStudio project. You can do this by following these simple steps:

4.7.4.1 Step 1: Create a New Project

1. Go to: File → New Project in RStudio

Figure 4.3: Creating a New Project in RStudio

2. Choose: Existing Directory

149

Figure 4.4: Creating a New Project in RStudio

3. Select the folder you want to use as your project’s working directory and RStudio will
create a project file (.Rproj).

4. Click: Create Project

Figure 4.5: Creating a New R Project from an Existing Directory

Once you click “Create Project”, you’re all set! You’ll be inside your new RStudio project.

150

Figure 4.6: RStudio Project: Stock Market Price Scraper Using R

4.7.4.2 Step 2: Arrange Your Files

Organise your project files into the following structure:

• data/: Store raw data files here in formats such as .csv or .xlsx.

• analysis/: Place your analysis scripts or reports in this folder. For example, you might
use a Quarto file (my_report.qmd) to combine R code, narrative text, and visualisations.

• R/: Save reusable R functions in this folder, and source them into your scripts as needed.

4.7.4.3 Step 3: Use Relative Paths

Always refer to files using paths relative to your project folder. For example:

data <- read.csv("data/my_data.csv")

4.7.4.4 Step 4: Add Documentation

Include a README.md file to document the purpose, structure, and usage of your project. Add
a LICENSE file to define terms of use.

151

Figure 4.7: Organization of an R Project Directory

From now on, whenever you open this project (by clicking the .Rproj file), RStudio will
automatically set your working directory, allowing you to use relative paths easily as shown in
Figure 4.7

4.7.5 Practice Quiz 4.2

Question 1:

What is a key advantage of using RStudio Projects?

a) They automatically install packages.

b) They allow you to use absolute paths easily.

c) They set the working directory to the project folder, enabling relative paths.

d) They prevent package updates.

Question 2:

Which file extension identifies an RStudio Project file?

a) .Rdata

b) .Rproj

c) .Rmd

d) .Rscript

152

Question 3:

Why are relative paths preferable in a collaborative environment?

a) They are shorter and easier to type.

b) They change automatically when you move files.

c) They ensure that the code works regardless of the user’s file system structure.

d) They are required for Git version control.

See the Solution to Quiz 4.2

4.8 Experiment 4.3: Importing and Exporting Data in R

Data import and export are vital steps in data science. With R, you can load data from
spreadsheets, databases, and many other formats, and subsequently save your processed results.
Figure 4.8 below illustrates some popular R packages for data import:

Figure 4.8: Data Import Packages in R

Note

Packages like readr, readxl, and haven are part of the tidyverse, and therefore are
pre-installed when you install the tidyverse. You do not need to install these packages
individually. For a complete list of tidyverse packages, see the following code:

tidyverse::tidyverse_packages()

153

#> [1] "broom" "conflicted" "cli" "dbplyr"
#> [5] "dplyr" "dtplyr" "forcats" "ggplot2"
#> [9] "googledrive" "googlesheets4" "haven" "hms"
#> [13] "httr" "jsonlite" "lubridate" "magrittr"
#> [17] "modelr" "pillar" "purrr" "ragg"
#> [21] "readr" "readxl" "reprex" "rlang"
#> [25] "rstudioapi" "rvest" "stringr" "tibble"
#> [29] "tidyr" "xml2" "tidyverse"

You don’t need to install any of these packages individually since they’re all included
with the tidyverse installation.

R offers some excellent packages that simplify the processes of importing and exporting data.
In the sections below, we will explore a few commonly used packages and functions that are
essential when working with data in R.

4.8.1 Flat Files

Flat files, such as CSV files, are among the most common formats for data storage and exchange.
The readr package (a core component of the tidyverse) provides functions specifically designed
to handle flat files. The two primary functions are:

• read_csv(): This function imports data from a CSV file into R as a data frame, akin
to loading data directly from a spreadsheet.

• write_csv(): Once your data analysis is complete, this function exports your data frame
to a CSV file. It is particularly useful for sharing your results or maintaining a backup.

Example 1: Reading CSV Data From a File

Suppose you have a file named cleveland-heart-disease-database.csv located in the
r-data folder. You can import this flat file into R as follows:

library(tidyverse)

heart_disease_data <- read_csv("r-data/cleveland-heart-disease-database.csv")

heart_disease_data

#> # A tibble: 303 x 14
#> age sex `chest pain type` resting blood pressur~1 serum cholestoral in~2
#> <dbl> <chr> <chr> <dbl> <dbl>
#> 1 63 male typical angina 145 233

154

#> 2 67 male asymptomatic 160 286
#> 3 67 male asymptomatic 120 229
#> 4 37 male non-anginal pain 130 250
#> 5 41 female atypical angina 130 204
#> 6 56 male atypical angina 120 236
#> 7 62 female asymptomatic 140 268
#> 8 57 female asymptomatic 120 354
#> 9 63 male asymptomatic 130 254
#> 10 53 male asymptomatic 140 203
#> # i 293 more rows
#> # i abbreviated names: 1: `resting blood pressure in mm Hg`,
#> # 2: `serum cholestoral in mg/dl`
#> # i 9 more variables: `fasting blood sugar > 120 mg/dl` <lgl>,
#> # `resting electrocardiographic results` <dbl>,
#> # `maximum heart rate achieved` <dbl>, `exercise induced angina` <chr>,
#> # `ST depression` <dbl>, `slope of the peak exercise ST segment` <chr>, ...

Tip

For information on downloading the data, please refer to Appendix B.1. Should you en-
counter any errors when executing the code, first set up your RStudio project as described
in Section 4.8.5, then re-run the code.

When you run read_csv(), you will notice a message detailing the number of rows and columns,
the delimiter used, and information regarding the column types. This ensures that your data
is read correctly. You may also specify how missing values are represented via the na argument.
For example, setting na = "?" tells read_csv() to treat the ? symbol as NA in the dataset:

heart_disease_data <- read_csv("r-data/cleveland-heart-disease-database.csv", na = "?")

heart_disease_data

#> # A tibble: 303 x 14
#> age sex `chest pain type` resting blood pressur~1 serum cholestoral in~2
#> <dbl> <chr> <chr> <dbl> <dbl>
#> 1 63 male typical angina 145 233
#> 2 67 male asymptomatic 160 286
#> 3 67 male asymptomatic 120 229
#> 4 37 male non-anginal pain 130 250
#> 5 41 female atypical angina 130 204
#> 6 56 male atypical angina 120 236
#> 7 62 female asymptomatic 140 268

155

#> 8 57 female asymptomatic 120 354
#> 9 63 male asymptomatic 130 254
#> 10 53 male asymptomatic 140 203
#> # i 293 more rows
#> # i abbreviated names: 1: `resting blood pressure in mm Hg`,
#> # 2: `serum cholestoral in mg/dl`
#> # i 9 more variables: `fasting blood sugar > 120 mg/dl` <lgl>,
#> # `resting electrocardiographic results` <dbl>,
#> # `maximum heart rate achieved` <dbl>, `exercise induced angina` <chr>,
#> # `ST depression` <dbl>, `slope of the peak exercise ST segment` <chr>, ...

Example 2: Writing to a CSV File

After processing or analysing your data, you might wish to save your results. The write_csv()
function writes the data to disk, enabling you to share your cleaned or transformed data with
others. The key arguments are:

• x: The data frame to be saved.

• file: the destination file path.

For example:

write_csv(heart_disease_data, "processed-cleveland-heart-disease-data.csv")

Tip

Additional arguments allow you to control the representation of missing values (using na)
and whether to append to an existing file (using append). For instance:

4.8.2 Spreadsheets

Microsoft Excel is a widely used application that organises data into worksheets within a single
workbook2. The readxl package is used to import Excel spreadsheets (e.g. .xlsx files) into
R, while the writexl package is used to export data frames to Excel files.

The primary functions are:

• read_xlsx(): Imports an Excel file into R. You can specify the worksheet containing
your data by using the sheet argument.

2If you or your collaborators rely on spreadsheets to organise data, we highly recommend the paper “Data
Organization in Spreadsheets” by Karl Broman and Kara Woo: https://doi.org/10.1080/00031305.2017.
1375989. It provides valuable guidance on best practices and efficient data structuring techniques.

156

https://doi.org/10.1080/00031305.2017.1375989
https://doi.org/10.1080/00031305.2017.1375989

• write_xlsx(): Export your data frame to an Excel file—ideal for sharing your work
with colleagues who prefer Excel.

Example 1: Reading Excel Spreadsheets

In this example, we import data from an Excel spreadsheet using the readxl package. Al-
though readxl is not part of the core tidyverse, it is installed automatically with the tidyverse,
so you must load it explicitly:

library(tidyverse)
library(readxl)
library(writexl)

The spreadsheet, as shown in Figure 4.9, can be downloaded from https://docs.google.com/
spreadsheets/d/107H-n59gDw0QoIktksU9wv6Iro4TGUAOgmQJW6pb19Y

Figure 4.9: Spreadsheet called penguins.xlsx in Excel.

The first argument of read_xlsx() is the file path:

penguins <- read_xlsx("r-data/penguins.xlsx")

This function reads the file as a tibble3:

penguins

3A tibble is a modern version of an R data frame that provides cleaner printing and more consistent behavior,
especially within the tidyverse ecosystem.

157

https://docs.google.com/spreadsheets/d/107H-n59gDw0QoIktksU9wv6Iro4TGUAOgmQJW6pb19Y
https://docs.google.com/spreadsheets/d/107H-n59gDw0QoIktksU9wv6Iro4TGUAOgmQJW6pb19Y

#> # A tibble: 337 x 7
#> species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Adelie Torgersen 39.1 18.7 181 3750
#> 2 Adelie Torgersen 39.5 17.4 186 3800
#> 3 Adelie Torgersen 40.3 18 195 3250
#> 4 Adelie Torgersen 36.7 19.3 193 3450
#> 5 Adelie Torgersen 39.3 20.6 190 3650
#> 6 Adelie Torgersen 38.9 17.8 181 3625
#> 7 Adelie Torgersen 39.2 19.6 195 4675
#> 8 Adelie Torgersen 34.1 18.1 193 3475
#> 9 Adelie Torgersen 42 20.2 190 4250
#> 10 Adelie Torgersen 37.8 17.1 186 3300
#> # i 327 more rows
#> # i 1 more variable: sex <chr>

This dataset contains data on 337 penguins and includes seven variables for each species.

Example 2: Reading Worksheets

Spreadsheets may contain multiple worksheets. Figure 4.10 illustrates an Excel work-
book with several sheets. The data, sourced from the ggplot2 package, is avail-
able at https://docs.google.com/spreadsheets/d/1izO0mHu3L9AMySQUXGDn9GPs1n-
VwGFSEoAKGhqVQh0. Each worksheet contains information on diamond prices for
different cuts.

Figure 4.10: Spreadsheet called diamond.xlsx in Excel.

You can read a specific worksheet by using the sheet argument in read_xlsx(). By default,
the first worksheet is read.

158

https://docs.google.com/spreadsheets/d/1izO0mHu3L9AMySQUXGDn9GPs1n-VwGFSEoAKGhqVQh0
https://docs.google.com/spreadsheets/d/1izO0mHu3L9AMySQUXGDn9GPs1n-VwGFSEoAKGhqVQh0

diamonds_fair <- read_xlsx("r-data/diamonds.xlsx", sheet = "Fair")

diamonds_fair

#> # A tibble: 60 x 9
#> carat color clarity depth table price x y z
#> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2 I SI1 65.9 60 13764 7.8 7.73 5.12
#> 2 0.7 H SI1 65.2 58 2048 5.49 5.55 3.6
#> 3 1.51 E SI1 58.4 70 11102 7.55 7.39 4.36
#> 4 0.7 D SI2 65.5 57 1806 5.56 5.43 3.6
#> 5 0.35 F VVS1 54.6 59 1011 4.85 4.79 2.63
#> 6 0.5 E VS2 64.9 56 1397 5.01 4.95 3.23
#> 7 1 E SI1 65.1 61 4435 6.15 6.08 3.98
#> 8 1.09 J VS2 64.6 58 3443 6.48 6.41 4.16
#> 9 0.98 H SI2 67.9 60 2777 6.05 5.97 4.08
#> 10 0.7 F SI1 65.3 54 1974 5.58 5.54 3.63
#> # i 50 more rows

If numerical data is read as text because the string “NA” is not automatically recognised as a
missing value, you may correct this by specifying the na argument:

read_excel("r-data/diamonds.xlsx", sheet = "Fair", na = "NA")

#> # A tibble: 60 x 9
#> carat color clarity depth table price x y z
#> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2 I SI1 65.9 60 13764 7.8 7.73 5.12
#> 2 0.7 H SI1 65.2 58 2048 5.49 5.55 3.6
#> 3 1.51 E SI1 58.4 70 11102 7.55 7.39 4.36
#> 4 0.7 D SI2 65.5 57 1806 5.56 5.43 3.6
#> 5 0.35 F VVS1 54.6 59 1011 4.85 4.79 2.63
#> 6 0.5 E VS2 64.9 56 1397 5.01 4.95 3.23
#> 7 1 E SI1 65.1 61 4435 6.15 6.08 3.98
#> 8 1.09 J VS2 64.6 58 3443 6.48 6.41 4.16
#> 9 0.98 H SI2 67.9 60 2777 6.05 5.97 4.08
#> 10 0.7 F SI1 65.3 54 1974 5.58 5.54 3.63
#> # i 50 more rows

Another approach is to use excel_sheets() to list all the worksheets in an Excel file and then
import only the ones you need.

159

excel_sheets("r-data/diamonds.xlsx")

#> [1] "Fair" "Good" "Very Good" "Premium" "Ideal"

Once the worksheet names are known, they can be imported individually:

diamonds_fair <- read_excel("r-data/diamonds.xlsx", sheet = "Fair")

diamonds_good <- read_excel("r-data/diamonds.xlsx", sheet = "Good")

diamonds_very_good <- read_excel("r-data/diamonds.xlsx", sheet = "Very Good")

diamonds_premium <- read_excel("r-data/diamonds.xlsx", sheet = "Premium")

diamonds_ideal <- read_excel("r-data/diamonds.xlsx", sheet = "Ideal")

In this instance, the complete diamonds dataset is distributed across five worksheets that share
the same columns but differ in the number of rows. You can inspect their dimensions using:

dim(diamonds_fair)

#> [1] 60 9

dim(diamonds_good)

#> [1] 49 9

dim(diamonds_very_good)

#> [1] 42 9

dim(diamonds_premium)

#> [1] 49 9

160

dim(diamonds_ideal)

#> [1] 60 9

You can also combine the worksheets into one data frame by using bind_rows():

diamonds <- bind_rows(
diamonds_fair,
diamonds_good,
diamonds_very_good,
diamonds_premium,
diamonds_ideal

)

diamonds

#> # A tibble: 260 x 9
#> carat color clarity depth table price x y z
#> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2 I SI1 65.9 60 13764 7.8 7.73 5.12
#> 2 0.7 H SI1 65.2 58 2048 5.49 5.55 3.6
#> 3 1.51 E SI1 58.4 70 11102 7.55 7.39 4.36
#> 4 0.7 D SI2 65.5 57 1806 5.56 5.43 3.6
#> 5 0.35 F VVS1 54.6 59 1011 4.85 4.79 2.63
#> 6 0.5 E VS2 64.9 56 1397 5.01 4.95 3.23
#> 7 1 E SI1 65.1 61 4435 6.15 6.08 3.98
#> 8 1.09 J VS2 64.6 58 3443 6.48 6.41 4.16
#> 9 0.98 H SI2 67.9 60 2777 6.05 5.97 4.08
#> 10 0.7 F SI1 65.3 54 1974 5.58 5.54 3.63
#> # i 250 more rows

An alternative method to import all worksheets from a workbook is provided by the
read_excel_workbook() function from the bulkreadr package. This function reads the data
from every sheet in an Excel workbook and returns a single appended data frame:

library(bulkreadr)

diamonds <- read_excel_workbook("r-data/diamonds.xlsx")

diamonds

161

#> # A tibble: 260 x 9
#> carat color clarity depth table price x y z
#> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2 I SI1 65.9 60 13764 7.8 7.73 5.12
#> 2 0.7 H SI1 65.2 58 2048 5.49 5.55 3.6
#> 3 1.51 E SI1 58.4 70 11102 7.55 7.39 4.36
#> 4 0.7 D SI2 65.5 57 1806 5.56 5.43 3.6
#> 5 0.35 F VVS1 54.6 59 1011 4.85 4.79 2.63
#> 6 0.5 E VS2 64.9 56 1397 5.01 4.95 3.23
#> 7 1 E SI1 65.1 61 4435 6.15 6.08 3.98
#> 8 1.09 J VS2 64.6 58 3443 6.48 6.41 4.16
#> 9 0.98 H SI2 67.9 60 2777 6.05 5.97 4.08
#> 10 0.7 F SI1 65.3 54 1974 5.58 5.54 3.63
#> # i 250 more rows

You can also specify the .id argument in read_excel_workbook() to add an output column
that identifies the source of each row (using either the sheet names or their positions):

diamonds <- bulkreadr::read_excel_workbook("r-data/diamonds.xlsx", .id = "sheet")

diamonds

#> # A tibble: 260 x 10
#> sheet carat color clarity depth table price x y z
#> <chr> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Fair 2 I SI1 65.9 60 13764 7.8 7.73 5.12
#> 2 Fair 0.7 H SI1 65.2 58 2048 5.49 5.55 3.6
#> 3 Fair 1.51 E SI1 58.4 70 11102 7.55 7.39 4.36
#> 4 Fair 0.7 D SI2 65.5 57 1806 5.56 5.43 3.6
#> 5 Fair 0.35 F VVS1 54.6 59 1011 4.85 4.79 2.63
#> 6 Fair 0.5 E VS2 64.9 56 1397 5.01 4.95 3.23
#> 7 Fair 1 E SI1 65.1 61 4435 6.15 6.08 3.98
#> 8 Fair 1.09 J VS2 64.6 58 3443 6.48 6.41 4.16
#> 9 Fair 0.98 H SI2 67.9 60 2777 6.05 5.97 4.08
#> 10 Fair 0.7 F SI1 65.3 54 1974 5.58 5.54 3.63
#> # i 250 more rows

Example 3: Writing Data to an Excel File

After processing your Excel data in R, you may wish to export the cleaned data. The
write_xlsx() function from the writexl package enables you to save your data frame as
a new Excel file:

162

write_xlsx(diamonds_fair, path = "r-data/diamonds_fair.xlsx")

Figure 4.11 shows the resulting Excel file. By default, column names are included and bolded.
You can disable these features by setting the col_names and format_headers arguments to
FALSE.

Figure 4.11: Spreadsheet View of the File diamond-fair.xlsx in Excel.

4.8.3 Labelled Data

Labelled data commonly originates from specialised statistical software such as SPSS, Stata,
or SAS. These datasets often include value labels that describe the meaning of each code. R
can import these files using the haven package. Like the readxl, haven is not part of the core
tidyverse, but is installed automatically with it; however, you must load it explicitly.

For example:

• SPSS

– read_sav(): This function imports data from SPSS files (files with .sav extension)
into R.

– write_sav(): Exports a data frame from R back to SPSS format.

• Stata

– read_dta(): For Stata users, this function imports Stata files into R.

– write_dta(): Similarly, this function lets you export data frames to Stata format.

• SAS

163

– read_sas() reads .sas7bdat + .sas7bcat files and read_xpt() reads SAS transport
files (versions 5 and 8).

– write_xpt() writes SAS transport files (versions 5 and 8).

Example 1: Reading an SPSS File

Suppose you have an SPSS file named wages.sav. You can import it using haven as follows:

library(tidyverse)
library(haven)

wages <- read_sav("r-data/wages.sav")

wages

#> # A tibble: 400 x 9
#> id educ south sex exper wage occup marr ed
#> <dbl> <dbl> <dbl+lbl> <dbl+l> <dbl> <dbl> <dbl+l> <dbl+l> <dbl+l>
#> 1 3 12 0 [does not live in ~ 0 [Mal~ 17 7.5 6 [Oth~ 1 [Mar~ 2 [Hig~
#> 2 4 13 0 [does not live in ~ 0 [Mal~ 9 13.1 6 [Oth~ 0 [Not~ 3 [Som~
#> 3 5 10 1 [lives in South] 0 [Mal~ 27 4.45 6 [Oth~ 0 [Not~ 1 [Les~
#> 4 12 9 1 [lives in South] 0 [Mal~ 30 6.25 6 [Oth~ 0 [Not~ 1 [Les~
#> 5 13 9 1 [lives in South] 0 [Mal~ 29 20.0 6 [Oth~ 1 [Mar~ 1 [Les~
#> 6 14 12 0 [does not live in ~ 0 [Mal~ 37 7.3 6 [Oth~ 1 [Mar~ 2 [Hig~
#> 7 17 11 0 [does not live in ~ 0 [Mal~ 16 3.65 6 [Oth~ 0 [Not~ 1 [Les~
#> 8 20 12 0 [does not live in ~ 0 [Mal~ 9 3.75 6 [Oth~ 0 [Not~ 2 [Hig~
#> 9 21 11 1 [lives in South] 0 [Mal~ 14 4.5 6 [Oth~ 1 [Mar~ 1 [Les~
#> 10 23 6 1 [lives in South] 0 [Mal~ 45 5.75 6 [Oth~ 1 [Mar~ 1 [Les~
#> # i 390 more rows

In some cases, haven’s read_sav() may not fully process labelled variables. In such instances,
you can use the bulkreadr package for a more seamless import:

library(bulkreadr)

Import SPSS data with automatic label conversion

wages_data <- read_spss_data("r-data/wages.sav")

wages_data

164

#> # A tibble: 400 x 9
#> id educ south sex exper wage occup marr ed
#> <dbl> <dbl> <fct> <fct> <dbl> <dbl> <fct> <fct> <fct>
#> 1 3 12 does not live in South Male 17 7.5 Other Married High ~
#> 2 4 13 does not live in South Male 9 13.1 Other Not married Some ~
#> 3 5 10 lives in South Male 27 4.45 Other Not married Less ~
#> 4 12 9 lives in South Male 30 6.25 Other Not married Less ~
#> 5 13 9 lives in South Male 29 20.0 Other Married Less ~
#> 6 14 12 does not live in South Male 37 7.3 Other Married High ~
#> 7 17 11 does not live in South Male 16 3.65 Other Not married Less ~
#> 8 20 12 does not live in South Male 9 3.75 Other Not married High ~
#> 9 21 11 lives in South Male 14 4.5 Other Married Less ~
#> 10 23 6 lives in South Male 45 5.75 Other Married Less ~
#> # i 390 more rows

Example 2: Writing to a SPSS File

After performing analyses or modifications on your SPSS data, you may wish to export the
results back to an SPSS file:

wages_data |> write_sav("wages.sav")

Example 3: Reading Stata File

Similarly, if you have a Stata dataset (for example, automobile.dta), you can import it using
bulkreadr:

Import Stata data with bulkreadr

automobile <- read_stata_data("r-data/automobile.dta")

glimpse(automobile)

#> Rows: 32
#> Columns: 11
#> $ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8,~
#> $ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8,~
#> $ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 16~
#> $ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180~
#> $ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92,~
#> $ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.~
#> $ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18~

165

#> $ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,~
#> $ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,~
#> $ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3,~
#> $ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2,~

Example 4: Writing to a Stata File

If you wish to export a data frame to a Stata format, you can use haven’s write function:

automobile |> write_dta("automobile-data.dta")

The rio Package

The rio package complements other data-importing packages by providing a one-stop
solution for data import and export in R. It handles a wide variety of file types—CSV,
Excel, SPSS, Stata, and more—so you don’t need to remember different functions for
each format.

• import(): Automatically detects the file type and imports your data into R, sim-
plifying the process of reading data from diverse sources.

• export(): Export your data frame to various file formats with ease, whether you
are creating a CSV file, an Excel workbook, or a file for statistical software.

For further details on the extensive capabilities of the rio package, please refer to the
rio documentation.

Example 1: Data Import with rio Package

In this example, we load the telco-customer-churn.csv file from the r-data folder using
the import() function. This function automatically detects the file type and loads the data
accordingly.

library(rio)

Import data from a CSV file
telco_customer_churn <- import("r-data/telco-customer-churn.csv")

After importing the data, you may wish to perform some basic cleaning. For instance, you
might standardise variable names using the clean_names() function from the janitor pack-
age:

166

https://www.rdocumentation.org/packages/rio/versions/1.2.3

library(janitor)

Clean variable names
telco_customer_churn <- telco_customer_churn |>
clean_names()

Glimpse the structure of the data
telco_customer_churn |>
glimpse()

#> Rows: 7,043
#> Columns: 21
#> $ customer_id <chr> "7590-VHVEG", "5575-GNVDE", "3668-QPYBK", "7795-CFOC~
#> $ gender <chr> "Female", "Male", "Male", "Male", "Female", "Female"~
#> $ senior_citizen <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
#> $ partner <chr> "Yes", "No", "No", "No", "No", "No", "No", "No", "Ye~
#> $ dependents <chr> "No", "No", "No", "No", "No", "No", "Yes", "No", "No~
#> $ tenure <int> 1, 34, 2, 45, 2, 8, 22, 10, 28, 62, 13, 16, 58, 49, ~
#> $ phone_service <chr> "No", "Yes", "Yes", "No", "Yes", "Yes", "Yes", "No",~
#> $ multiple_lines <chr> "No phone service", "No", "No", "No phone service", ~
#> $ internet_service <chr> "DSL", "DSL", "DSL", "DSL", "Fiber optic", "Fiber op~
#> $ online_security <chr> "No", "Yes", "Yes", "Yes", "No", "No", "No", "Yes", ~
#> $ online_backup <chr> "Yes", "No", "Yes", "No", "No", "No", "Yes", "No", "~
#> $ device_protection <chr> "No", "Yes", "No", "Yes", "No", "Yes", "No", "No", "~
#> $ tech_support <chr> "No", "No", "No", "Yes", "No", "No", "No", "No", "Ye~
#> $ streaming_tv <chr> "No", "No", "No", "No", "No", "Yes", "Yes", "No", "Y~
#> $ streaming_movies <chr> "No", "No", "No", "No", "No", "Yes", "No", "No", "Ye~
#> $ contract <chr> "Month-to-month", "One year", "Month-to-month", "One~
#> $ paperless_billing <chr> "Yes", "No", "Yes", "No", "Yes", "Yes", "Yes", "No",~
#> $ payment_method <chr> "Electronic check", "Mailed check", "Mailed check", ~
#> $ monthly_charges <dbl> 29.85, 56.95, 53.85, 42.30, 70.70, 99.65, 89.10, 29.~
#> $ total_charges <dbl> 29.85, 1889.50, 108.15, 1840.75, 151.65, 820.50, 194~
#> $ churn <chr> "No", "No", "Yes", "No", "Yes", "Yes", "No", "No", "~

Example 2: Exporting Data with rio Package

After importing your data, it is often necessary to review and adjust variable types. In this
example, all character columns (which represent categorical variables) are converted to fac-
tors, except for the customer_id column which remains as a character to preserve its unique
identifier status. Once the data is transformed (see Chapter 5 for further discussion on data
transformation), we filter the data to include only records where dependents is "Yes" and
then export the result to an Excel file.

167

telco_customer_churn <- telco_customer_churn %>%
mutate(across(where(is.character), as.factor)) %>%
mutate(customer_id = as.character(customer_id))

Filter data and export to an Excel file
telco_customer_churn |>
filter(dependents == "Yes") |>
export("telco_customer_churn.xlsx")

In this manner, rio offers a streamlined process for both importing and exporting data, re-
ducing the need to juggle multiple packages or recall numerous functions.

4.8.4 Web Scraping

Web scraping is the process of extracting data from websites, and R provides several tools to
facilitate this task. The ralger package is one such tool, offering a streamlined approach to
retrieving and parsing data from web pages. Whether you are collecting data for text analysis,
monitoring website updates, or simply gathering information from the web, ralger simplifies
the process.

4.8.4.1 Key Features of the ralger Package

• Simplified Data Retrieval: ralger allows you to quickly download the HTML content
of a web page without requiring multiple packages.

• CSS Selector Support: The package enables you to extract specific elements from a
webpage by utilising CSS selectors.

• Integrated Parsing Functions: Once the HTML is retrieved, ralger provides func-
tions to parse and manipulate the data efficiently.

Example 1: Extracting a Non-Table HTML Data

When web content is provided in HTML format, you can use the tidy_scrap() function from
the ralger package to extract data into a tidy data frame. This function returns a data frame
based on the arguments you supply. The key arguments are:

• link: The URL of the website you wish to scrape.

• nodes: A vector of CSS selectors corresponding to the HTML elements you want to
extract. These elements will form the columns of your data frame.

• colnames: A vector of names to assign to the columns, which should match the order
of the selectors specified in the nodes argument.

168

• clean: If set to TRUE, the function will clean the tibble’s columns.

• askRobot: If enabled, the function will consult the site’s robots.txt file to verify
whether scraping is permitted.

In this example, we will scrape the Hacker News website (https://news.ycombinator.com). We
aim to extract a tidy data frame containing the following elements:

• The story title.

• The site name (if available).

• The score of the story.

• Additional subline information.

• The username of the poster.

Here is how you can achieve this using the tidy_scrap() function with improved column
names:

library(ralger)

Define the URL for Hacker News
url <- "https://news.ycombinator.com/"

Define the CSS selectors for the elements to extract
nodes <- c(".titleline > a", ".sitestr", ".score", ".subline a+ a", ".hnuser")

Define descriptive column names for the resulting data frame
colnames <- c("title", "site", "score", "subline", "username")

Extract the data from all pages using tidy_scrap()
news_data <- tidy_scrap(
link = url,
nodes = nodes,
colnames = colnames,
clean = TRUE

)

#> Warning in (function (..., deparse.level = 1) : number of rows of result is not
#> a multiple of vector length (arg 2)

news_data

169

https://news.ycombinator.com

#> # A tibble: 30 x 5
#> title site score subline username
#> <chr> <chr> <chr> <chr> <chr>
#> 1 Minding the gaps: A new way to draw separators ~ wind~ 89 p~ 33 com~ Sigmund~
#> 2 How I accepted myself into Canada's largest AI ~ fast~ 127 ~ 40 com~ fastcall
#> 3 Austral: A Systems Language with Linear Types a~ borr~ 83 p~ 10 com~ yamrzou
#> 4 'Dark oxygen': a deep-sea discovery that has sp~ phys~ 17 p~ 8 comm~ pseudol~
#> 5 'More Than a Hint' That Dark Energy Isn't What ~ nyti~ 55 p~ 42 com~ Hooke
#> 6 Hunyuan3D-2-Turbo: fast high-quality shape gene~ gith~ 103 ~ 20 com~ dvrp
#> 7 How fast the days are getting longer (2023) joe-~ 538 ~ 189 co~ antogni~
#> 8 Bolt3D: Generating 3D Scenes in Seconds szym~ 206 ~ 31 com~ jasonda~
#> 9 Diagrams AI can, and cannot, generate ilog~ 86 p~ 14 com~ billyp-~
#> 10 SoftBank Group to Acquire Ampere Computing for ~ grou~ 83 p~ 41 com~ geerlin~
#> # i 20 more rows

Tip

In this code:

• The tidy_scrap() function is called with the Hacker News URL.

• The nodes argument specifies the CSS selectors for the elements we wish to extract.
The nodes vector contains the CSS selectors:

– “.titleline > a”: extracts the story title,
– “.sitestr”: extracts the site name,
– “.score”: extracts the story score,
– “.subline a+ a”: extracts additional subline information,
– “.hnuser”: extracts the username.

• The colnames argument assigns clear and descriptive names to the columns—
namely "title", "site", "score", "subline", and "username".

• The function returns a tidy data frame in which all columns are of character class;
you may convert these to other types as required for your analysis.

If you wish to scrape multiple list pages, you can use tidy_scrap() in conjunction with
paste0(). Suppose you want to scrape pages 1 through 5 of Hacker News:

Define the URL for Hacker News
url <- "https://news.ycombinator.com/"

Create a vector of URLs for pages 1 to 5

170

links <- paste0(url, "?p=", seq(1, 5, 1))

Extract the data from all pages using tidy_scrap()
news_data <- tidy_scrap(
link = links,
nodes = nodes,
colnames = colnames

)

#> Warning in (function (..., deparse.level = 1) : number of rows of result is not
#> a multiple of vector length (arg 2)

news_data

#> # A tibble: 150 x 5
#> title site score subline username
#> <chr> <chr> <chr> <chr> <chr>
#> 1 Minding the gaps: A new way to draw separators ~ wind~ 89 p~ 33 com~ Sigmund~
#> 2 How I accepted myself into Canada's largest AI ~ fast~ 127 ~ 40 com~ fastcall
#> 3 Austral: A Systems Language with Linear Types a~ borr~ 83 p~ 10 com~ yamrzou
#> 4 'Dark oxygen': a deep-sea discovery that has sp~ phys~ 17 p~ 8 comm~ pseudol~
#> 5 'More Than a Hint' That Dark Energy Isn't What ~ nyti~ 55 p~ 42 com~ Hooke
#> 6 Hunyuan3D-2-Turbo: fast high-quality shape gene~ gith~ 103 ~ 20 com~ dvrp
#> 7 How fast the days are getting longer (2023) joe-~ 539 ~ 189 co~ antogni~
#> 8 Bolt3D: Generating 3D Scenes in Seconds szym~ 207 ~ 31 com~ jasonda~
#> 9 Diagrams AI can, and cannot, generate ilog~ 86 p~ 14 com~ billyp-~
#> 10 SoftBank Group to Acquire Ampere Computing for ~ grou~ 84 p~ 41 com~ geerlin~
#> # i 140 more rows

Note

Since Hacker News is a dynamic website, the content may change over time. Therefore,
if you rerun the same lines of code at a later time, the extracted results may differ from
those obtained previously.

Example 2: Extracting an HTML Table

The ralger package also includes a function called table_scrap() for extracting HTML
tables from a web page. Suppose you want to extract an HTML table from a page listing the
highest lifetime gross revenues in the cinema industry. You can use the following code:

171

Extract an HTML table from the specified URL

url <- "https://www.boxofficemojo.com/chart/top_lifetime_gross/?area=XWW"

lifetime_gross <- table_scrap(link = url)

#> Warning: The `fill` argument of `html_table()` is deprecated as of rvest 1.0.0.
#> i An improved algorithm fills by default so it is no longer needed.
#> i The deprecated feature was likely used in the rvest package.
#> Please report the issue at <https://github.com/tidyverse/rvest/issues>.

Display the extracted table
lifetime_gross

#> # A tibble: 200 x 4
#> Rank Title `Lifetime Gross` Year
#> <int> <chr> <chr> <int>
#> 1 1 Avatar $2,923,710,708 2009
#> 2 2 Avengers: Endgame $2,799,439,100 2019
#> 3 3 Avatar: The Way of Water $2,320,250,281 2022
#> 4 4 Titanic $2,264,812,968 1997
#> 5 5 Star Wars: Episode VII - The Force Awakens $2,071,310,218 2015
#> 6 6 Avengers: Infinity War $2,052,415,039 2018
#> 7 7 Spider-Man: No Way Home $1,952,732,181 2021
#> 8 8 Ne Zha 2 $1,889,217,312 2025
#> 9 9 Inside Out 2 $1,698,863,816 2024
#> 10 10 Jurassic World $1,671,537,444 2015
#> # i 190 more rows

Note

If you are dealing with a web page that contains multiple HTML tables, you can use the
choose argument with table_scrap() to target a specific table. For more advanced use
cases and customisation options, please refer to the package documentation.

By incorporating web scraping into your data analysis workflow, you can dynamically collect
data from the web and integrate it with your existing analyses, thereby broadening the scope
of your data-driven insights.

172

https://github.com/feddelegrand7/ralger

4.8.5 Bringing It All Together

When working on a project, it is best practice to organise your data and code within a dedicated
RStudio project. Store your data files (be they flat files, spreadsheets, or labelled files) in a
folder (for example, data/), and use relative paths when reading and writing data. This
approach promotes reproducibility and clarity. Let us now practise importing data using the
gapminder.csv file.

Before We Begin:

1. Create a Directory
Create a new folder on your desktop called Experiment 4.3.

2. Download Data
Visit Google Drive to download the r-data folder (refer to Appendix B.1 for additional
information). Once downloaded, unzip the folder and move it into your Experiment 4.3
folder.

3. Create an RStudio Project
Open RStudio and set up a new project as follows:

• Go to File > New Project.

• Select Existing Directory and navigate to your Experiment 4.3 folder.
This project setup will organise your work and ensure that everything related to
this experiment is contained in one place.

Your project structure should resemble the one shown in Figure 4.12:

Figure 4.12: Starting a New R Project in RStudio

Now, let us import the gapminder.csv file from the r-data folder into R using the tidyverse
package for convenient data manipulation and visualisation:

173

https://drive.google.com/drive/folders/1ZhI-t94uZa82KD8hEN0f1WALfCiRFWCP?usp=drive_link

library(tidyverse)

Load the gapminder data
gapminder <- read_csv("r-data/gapminder.csv")

#> Rows: 1704 Columns: 6
#> -- Column specification --
#> Delimiter: ","
#> chr (2): country, continent
#> dbl (4): year, lifeExp, pop, gdpPercap
#>
#> i Use `spec()` to retrieve the full column specification for this data.
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Explore the data
names(gapminder)

#> [1] "country" "continent" "year" "lifeExp" "pop" "gdpPercap"

dim(gapminder)

#> [1] 1704 6

head(gapminder)

#> # A tibble: 6 x 6
#> country continent year lifeExp pop gdpPercap
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Afghanistan Asia 1952 28.8 8425333 779.
#> 2 Afghanistan Asia 1957 30.3 9240934 821.
#> 3 Afghanistan Asia 1962 32.0 10267083 853.
#> 4 Afghanistan Asia 1967 34.0 11537966 836.
#> 5 Afghanistan Asia 1972 36.1 13079460 740.
#> 6 Afghanistan Asia 1977 38.4 14880372 786.

summary(gapminder)

174

#> country continent year lifeExp
#> Length:1704 Length:1704 Min. :1952 Min. :23.60
#> Class :character Class :character 1st Qu.:1966 1st Qu.:48.20
#> Mode :character Mode :character Median :1980 Median :60.71
#> Mean :1980 Mean :59.47
#> 3rd Qu.:1993 3rd Qu.:70.85
#> Max. :2007 Max. :82.60
#> pop gdpPercap
#> Min. :6.001e+04 Min. : 241.2
#> 1st Qu.:2.794e+06 1st Qu.: 1202.1
#> Median :7.024e+06 Median : 3531.8
#> Mean :2.960e+07 Mean : 7215.3
#> 3rd Qu.:1.959e+07 3rd Qu.: 9325.5
#> Max. :1.319e+09 Max. :113523.1

After running this script, your dataset should be loaded into RStudio and ready for exploration.
Your script should resemble the one in Figure 4.13:

Figure 4.13: Loading and Exploring Data in RStudio

This setup ensures that everything required for your analysis is neatly organised, reproducible,
and ready for you to begin analysing the gapminder data in R.

4.8.6 Practice Quiz 4.3

Question 1:

Which package is commonly used to read CSV files into R as tibbles?

a) readxl

175

b) haven

c) readr

d) writexl

Question 2:

If you need to import an Excel file, which function would you likely use?

a) read_csv()

b) read_xlsx()

c) read_sav()

d) read_dta()

Question 3:

Which package would you use to easily handle a wide variety of data formats without memo-
rising specific functions for each?

a) rio

b) haven

c) janitor

d) readxl

Question 4:

After cleaning and analysing your data, which function would you use to write the results to
a CSV file?

a) write_xlsx()

b) export()

c) write_csv()

d) import()

See the Solution to Quiz 4.3

176

4.8.7 Exercise 4.3.1: Medical Insurance Data

In this exercise, you’ll explore the medical-insurance.xlsx file located in the r-data folder.
You can download this file from Google Drive. This dataset contains medical insurance infor-
mation for various individuals. Below is an overview of each column:

1. User ID: A unique identifier for each individual.

2. Gender: The individual’s gender (‘Male’ or ‘Female’).

3. Age: The age of the individual in years.

4. AgeGroup: The age bracket the individual falls into.

5. Estimated Salary: An estimate of the individual’s yearly salary.

6. Purchased: Indicates whether the individual has purchased medical insurance (1 for
Yes, 0 for No).

Your Tasks:

1. Importing and Basic Handling:

• Create a new script and import the data from the Excel file.
• How would you import this data if it’s in SPSS format?
• Use the clean_names() function from the janitor package to make variable names

consistent and easy to work with.
• Can you display the first three rows of the dataset?
• How many rows and columns does the dataset have?

2. Understanding the Data:

• What are the column names in the dataset?
• Can you identify the data types of each column?

3. Basic Descriptive Statistics:

• What is the average age of the individuals in the dataset?
• What’s the range of the estimated salaries?

177

https://docs.google.com/spreadsheets/d/1RPyZx6viNm-kDd4NKaINTG1wmO_02Bfr/edit?usp=drive_link&ouid=106220036497399452279&rtpof=true&sd=true

4.9 Reflective Summary

In Lab 4, you have acquired essential skills to enhance your efficiency and effectiveness as an
R programmer:

• Installing and Loading Packages: You learned how to find, install, and load packages
from CRAN and external repositories like GitHub.

• Reproducible Workflows with RStudio Projects: You discovered the importance
of organizing your work within RStudio Projects.

• Importing and Exporting Data: You practiced importing and exporting data in
various formats (CSV, Excel, SPSS) using packages like readr, readxl, and haven.

These skills are fundamental for efficient data analysis, helping you manage diverse data
sources, maintain integrity in your analyses, and collaborate more effectively. Congratula-
tions on progressing as an R programmer and data analyst!

What’s Next?

In the next lab, we’ll delve into data transformation where will reshape raw data into a
more useful format for data analysis.

178

Part II

Data Analytics

179

5 Data Transformation

5.1 Introduction

Welcome to Lab 5! In this lab, we will focus on one of the most important steps in the data
analysis process: data transformation. Real-world data rarely arrives in perfect, analysis-ready
form. Before generating insights, visualising patterns, or constructing models, we must trans-
form the data: cleaning, reshaping, and summarising it into a more meaningful structure.

In this lab, we will explore:

• The native pipe operator |> to create a smooth, readable pipeline of data operations.

• The core dplyr verbs—select(), filter(), mutate(), arrange(), and summarise()—
to efficiently manipulate and refine your data.

• Strategies for grouping and summarising data to extract patterns and trends.

• Techniques for identifying and handling missing values responsibly.

These transformations form a vital step in any data workflow, ensuring that your datasets are
well-prepared for subsequent analysis or visualisation.

5.2 Learning Objectives

By the end of this lab, you will be able to:

• Streamline Your Code Using the Pipe Operator |>
Connect multiple data operations into a logical sequence, enhancing code readability and
reducing nesting complexity.

• Perform Key Data Transformation Tasks Using dplyr
Utilise functions like select(), filter(), arrange(), mutate(), and summarise() tore-
shape, refine, and improve datasets for analysis.

• Gain Insights Through Summarisation and Grouping
Group data and apply aggregation functions to extract meaningful summaries and trends.

180

• Handle and Impute Missing Data
Identify missing values in your datasets, understand their impact, and apply suitable
strategies (e.g., removal, mean/median imputation) to maintain data integrity.

• Prepare Data for Analysis and Visualisation
Clean and structure your datasets so they are ready for modelling, plotting, and com-
municating results effectively.

By completing this lab, you will master data transformation and become more confident in
dealing with messy, real-world datasets and advancing towards deeper analyses.

5.3 Prerequisites

Before starting this lab, you should have:

• Completed Lab 4 or have a solid understanding of organising R projects and managing
packages.

• Familiarity with loading data into R and conducting basic data checks (e.g., using
glimpse(), head()).

• Interest in refining data, ensuring it is tidy, structured, and ready for more advanced
analyses.

5.4 What is Data Transformation?

Data transformation is the process of reshaping raw data into a more useful format. Real-
world data is rarely perfect for immediate analysis. It often contains extra variables, missing
values, or is structured in a way that is not conducive to answering your research questions.
Data transformation includes:

• Selecting relevant parts of the dataset: Focusing on the rows and columns you actually
need.

• Creating new variables: Deriving meaningful metrics from existing data.

• Summarising information: Computing averages, totals, or other aggregate statistics to
distil complex information into digestible summaries.

• Organising data into a meaningful structure: Arranging your dataset so that the rela-
tionships between variables and observations are clear.

181

You can think of data transformation like preparing ingredients before cooking: you wash,
chop, and measure everything out so that when you start cooking, you can focus on creating
your dish without interruptions or confusion.

5.5 Real-World Scenario: Preparing Data for Analysis

Imagine that you work as a data analyst at a wildlife research centre. You have received a
raw dataset containing information on various species: their body measurements, diets, sleep
patterns, and more. Before you can analyse ecological relationships, test hypotheses, or build
models, you need to clean and organise this data. Using the techniques in this lab, you can:

• Select only the columns necessary for your investigation.

• Filter out rows that are not relevant to your study.

• Mutate the dataset to create new metrics or correct errors.

• Arrange the rows to highlight the largest or smallest values.

• Summarise the data by group to identify patterns by species or habitat.

• Handle missing values so that they do not distort your findings.

By applying these transformations, you ensure that your data is analysis-ready.

5.6 Experiment 5.1: The Pipe Operator |>

One of the best tools to simplify your R code is the pipe operator. Traditionally, the <%>
operator from the magrittr package has been widely used for this purpose. However, starting
from R version 4.1.0, R introduced a native pipe operator |>. The pipe operator allows you
to chain functions together in a linear, logical sequence, rather than nesting them inside one
another. Using pipes makes your code more readable and helps you think through your data
transformations step-by-step.

In this lab, we will be using the base pipe operator |>, which functions similarly to the
magrittr <%> operator1. Imagine you have data frame, data, and you want to perform
multiple operations on it, such as applying functions foo and bar in sequence. Without a
pipe, you might write as:

bar(foo(data))

This is harder to read than:
1The |> operator (called a pipe) means “and then.” It passes the result of one function to the next.

182

data |>
foo() |>
bar()

In the piped version, you start with data, then say “and then apply foo(),” and then “and
then apply bar(),” which feels more intuitive and mirrors how we naturally describe processes
in words.

How to configure native pipe operator

To configure RStudio to insert the base pipe operator |> instead of %>% when pressing
Ctrl/Cmd + Shift + M, navigate to the Tools menu, select Global Options…, then go to
the Code section. In the Code options, check the box labelled Use native pipe operator,
|> (requires R 4.1+).

Figure 5.1: To insert |>, make sure the “Use native pipe operator” option is checked

How Does the Pipe Operator Work?

The pipe operator |> takes the output of one function and passes it as the first argument to
the next function.

Example 1

183

For instance, consider:

iris |> head()

#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa

This is exactly the same as:

head(iris)

#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa

Example 2:

Here’s another example combining multiple functions:

x <- 4.234

x |>
sqrt() |>
log() |>
round(2)

#> [1] 0.72

This sequence is equivalent to the nested version:

184

x <- 4.234

round(log(sqrt(x)), 2)

#> [1] 0.72

Reflection Question:

How does using the pipe operator enhance clarity, compared to nested function calls,
especially when performing multiple operations on the same dataset?

By using pipes, you avoid writing nested code and make the flow of your data transformation
much clearer.

5.6.1 Practice Quiz 5.1

Question 1:

What is the primary purpose of the pipe operator (|> or %>%) in R?

a) To run code in parallel.

b) To nest functions inside one another.

c) To pass the output of one function as the input to the next, improving code readability.
d) To automatically clean missing data.

Question 2:

Consider the following R code snippets:

numbers <- c(2, 4, 6)

Nested function version:
result1 <- round(sqrt(sum(numbers)))

Pipe operator version:
result2 <- numbers |> sum() |> sqrt() |> round()

For a new R learner, is the pipe operator version generally more readable than the nested
function version?

185

a) True
b) False

Question 3:

What is the output of the following R code?

result <- c(5, 10, 15)
result |> mean()

a) 10

b) 15

c) 5

d) 30

Question 4:

Which of the following code snippets correctly uses the pipe operator to apply the sqrt()
function to the sum of numbers from 1 to 4?

a) sqrt(sum(1:4))

b) 1:4 |> sum() |> sqrt()

c) sum(1:4) |> sqrt

d) 1:4 |> sqrt() |> sum()

Question 5:

What will be the output of the following code?

result <- letters
result |> head(3)

a) c("a", "b", "c")

b) c("x", "y", "z")

c) c("A", "B", "C")

d) An error is thrown.

See the Solution to Quiz 5.1

186

5.7 Experiment 5.2: Data Manipulation with dplyr

In data analysis, we often encounter datasets that aren’t in the ideal format for our needs.
Data comes in all shapes and sizes, and making sense of it requires effective manipulation.
This is where data manipulation becomes essential—a fundamental skill that allows you to
transform and summarize data efficiently.

The dplyr package, part of the tidyverse, is designed to make data manipulation in R more
approachable, efficient, and intuitive. Think of dplyr as your Swiss Army knife for taming
messy datasets. It simplifies tasks like filtering, summarizing, grouping, and transforming
data. The best part? Its syntax is easy to read and write, almost like having a conversation
with your data.

Why Use dplyr?

• Simplicity: Provides straightforward functions that are easy to learn and remember,
lowering the barrier to effective data manipulation.

• Efficiency: Optimized for performance, it handles large datasets swiftly, saving you time
and computational resources.

• Readability: Code written with dplyr is often more readable and easier to maintain,
which is especially beneficial when collaborating with others or revisiting your own work.

• Integration: Works seamlessly with other tidyverse packages like ggplot2 and tidyr, al-
lowing for a cohesive and efficient data analysis workflow.

Figure 5.2: Data Exploration and Analysis Workflow

Getting Started

187

First, ensure you have the dplyr package installed and loaded. If you haven’t installed it yet,
you can install the tidyverse, which includes dplyr.

Install the tidyverse package (if not already installed)
install.packages("tidyverse")

Load the tidyverse package
library(tidyverse)

Core dplyr Verbs

The core functions in dplyr are often referred to as “verbs” because they describe actions you
perform on your data:

• select(): Choose variables (columns) based on their names or column positions.

• mutate(): Create new columns or modify existing ones.

• filter(): Select rows based on specific conditions.

• arrange(): Reorder rows based on column values.

• summarise(): Reduce multiple values down to a summary statistic.

• group_by(): Group data by one or more variables for grouped operations.

When summarise() is paired with group_by(), it allows you to get a summary row for each
group in the data frame.

Figure 5.3: Key Data Manipulation Functions in dplyr

Additional useful functions include:

• rename(): Rename columns.

• distinct(): Find unique rows.

188

• count(): Count unique values of a variable.

Using Pipes with dplyr functions

One of the key strengths of dplyr is its ability to integrate seamlessly with the pipe operator
(%>% or |>), enabling a clean, readable, and intuitive workflow for data manipulation. As
illustrated in Figure 5.4, the pipe operator acts as a connector, allowing you to chain multiple
dplyr functions in a logical sequence. This approach makes your code easier to read and
follow, mirroring the flow of a conversation about your data.

Figure 5.4: Data Transformation Pipeline in dplyr

5.7.1 Working with the dplyr Verbs

Let’s take a deeper dive into each dplyr verb and understand not just how to use them but also
what makes them powerful. Remember, the five core verbs—filter(), select(), mutate(),
arrange(), and summarize()—are like tools in a toolbox. Each has a specific purpose, but
together, they allow you to transform data seamlessly.

Example Datasets

We’ll start our exploration by working with two fascinating datasets: the penguins dataset
from the palmerpenguins package2 and the msleep dataset from the ggplot2 package. These
datasets provide rich, real-world data that will help you practice and apply data manipulation
in this book.

1. The penguins Dataset

2If you haven’t installed it yet, you can do so with install.packages("palmerpenguins") and load it using
library(palmerpenguins).

189

The penguins dataset3 contains detailed body measurements for 344 penguins from three
different species—Adélie, Chinstrap, and Gentoo—found on three islands in the Palmer
Archipelago of Antarctica. This dataset includes variables such as:

• Species: The penguin species.

• Island: The island where each penguin was observed.

• Bill Length and Depth: Measurements of the penguin’s bill (beak).

• Flipper Length: The length of the penguin’s flippers.

• Body Mass: The weight of the penguin.

• Sex: The gender of the penguin.

penguins <- palmerpenguins::penguins

penguins |> glimpse()

#> Rows: 344
#> Columns: 8
#> $ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adel~
#> $ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgerse~
#> $ bill_length_mm <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, ~
#> $ bill_depth_mm <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, ~
#> $ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186~
#> $ body_mass_g <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, ~
#> $ sex <fct> male, female, female, NA, female, male, female, male~
#> $ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007~

2. The msleep Dataset

Our second dataset, msleep, comes from the ggplot2 package and contains information on
the sleep habits of 83 different mammals. This dataset includes 11 variables, such as:

• name: The common name of the mammal.

• genus: The taxonomic genus of the mammal.

• vore: The dietary category of the mammal. Possible values include:

– "carni": Carnivore (meat-eating)

– "herbi": Herbivore (plant-eating)

3Horst AM, Hill AP, Gorman KB (2020). palmerpenguins: Palmer Archipelago (Antarctica) penguin data. R
package version 0.1.0. https://allisonhorst.github.io/palmerpenguins/. doi: 10.5281/zenodo.3960218.

190

https://allisonhorst.github.io/palmerpenguins

– "omni": Omnivore (eating both plants and meat)

– "insecti": Insectivore (eating insects)

• order: The taxonomic order to which the mammal belongs (e.g., Primates, Carnivora).

• conservation: The conservation status of the species, indicating its level of threat or
endangerment. Possible values include:

– "lc": Least Concern

– "nt": Near Threatened

– "vu": Vulnerable

– "en": Endangered

– "cr": Critically Endangered

– "domesticated": Domesticated species

• sleep total: Total amount of sleep per day (in hours).

• sleep rem: Amount of REM sleep per day.

• sleep cycle: Length of the sleep cycle.

• awake: The number of hours the mammal spends awake each day (calculated as 24 -
sleep_total).

• brain weight: The brain weight of the animal.

• body weight: The body weight of the animal.

msleep <- ggplot2::msleep

msleep |> glimpse()

#> Rows: 83
#> Columns: 11
#> $ name <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Greater shor~
#> $ genus <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bos", "Bra~
#> $ vore <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi", "carn~
#> $ order <chr> "Carnivora", "Primates", "Rodentia", "Soricomorpha", "Art~
#> $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", NA, "dome~
#> $ sleep_total <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1, 3.0, 5~
#> $ sleep_rem <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0.6, 0.8, ~
#> $ sleep_cycle <dbl> NA, NA, NA, 0.1333333, 0.6666667, 0.7666667, 0.3833333, N~
#> $ awake <dbl> 11.9, 7.0, 9.6, 9.1, 20.0, 9.6, 15.3, 17.0, 13.9, 21.0, 1~

191

#> $ brainwt <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0.07000, 0~
#> $ bodywt <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.490, 0.04~

Tip

The glimpse() function allows us to quickly view the structure of a data frame in a
concise and readable format without printing the entire dataset. It serves as a more user-
friendly alternative to the str() function, making it easier to understand the overall
composition of your data at a glance.

5.7.2 select() – Picking Specific Columns

The select() function allows you to extract specific columns from a dataset, focusing on only
the features relevant to your analysis. It’s like creating a spotlight for just the features you
need.

Key Points:

1. Select Columns by Name or Position:

• You can specify columns by their names or their positions (e.g., 1, 2, 3).

• This is useful when you only need a few specific columns from a large dataset.

2. Use Helper Functions for Pattern Matching:

• starts_with("prefix"): Selects columns whose names begin with a specific prefix.

• ends_with("suffix"): Selects columns whose names end with a specific suffix.

• contains("substring"): Selects columns whose names contain a specific sub-
string.

3. Deselect Columns Using the Minus (-) Sign:

• You can drop columns by prefixing their names, indices, or helper functions with -.

• This is useful when you want to keep most columns but exclude specific ones.

4. Use where() in select():

• This allows you to select columns programmatically or apply operations to subsets
of columns.

192

5.7.2.1 Selecting Columns by Name:

Suppose we want to extract the name, vore, and sleep_total from the msleep data:

msleep |>
select(name, sleep_total, vore)

#> # A tibble: 83 x 3
#> name sleep_total vore
#> <chr> <dbl> <chr>
#> 1 Cheetah 12.1 carni
#> 2 Owl monkey 17 omni
#> 3 Mountain beaver 14.4 herbi
#> 4 Greater short-tailed shrew 14.9 omni
#> 5 Cow 4 herbi
#> 6 Three-toed sloth 14.4 herbi
#> 7 Northern fur seal 8.7 carni
#> 8 Vesper mouse 7 <NA>
#> 9 Dog 10.1 carni
#> 10 Roe deer 3 herbi
#> # i 73 more rows

5.7.2.2 Selecting Columns by Position:

You can use the position of columns to select them, for example, the first three columns:

msleep |>
select(1:3)

#> # A tibble: 83 x 3
#> name genus vore
#> <chr> <chr> <chr>
#> 1 Cheetah Acinonyx carni
#> 2 Owl monkey Aotus omni
#> 3 Mountain beaver Aplodontia herbi
#> 4 Greater short-tailed shrew Blarina omni
#> 5 Cow Bos herbi
#> 6 Three-toed sloth Bradypus herbi
#> 7 Northern fur seal Callorhinus carni
#> 8 Vesper mouse Calomys <NA>
#> 9 Dog Canis carni

193

#> 10 Roe deer Capreolus herbi
#> # i 73 more rows

5.7.2.3 Selecting Columns Using Patterns:

1. Columns Starting with a Prefix: Select columns starting with “sleep”:

msleep |>
select(starts_with("sleep"))

#> # A tibble: 83 x 3
#> sleep_total sleep_rem sleep_cycle
#> <dbl> <dbl> <dbl>
#> 1 12.1 NA NA
#> 2 17 1.8 NA
#> 3 14.4 2.4 NA
#> 4 14.9 2.3 0.133
#> 5 4 0.7 0.667
#> 6 14.4 2.2 0.767
#> 7 8.7 1.4 0.383
#> 8 7 NA NA
#> 9 10.1 2.9 0.333
#> 10 3 NA NA
#> # i 73 more rows

2. Columns Ending with a Suffix: Select columns ending with “wt”:

msleep |>
select(ends_with("wt"))

#> # A tibble: 83 x 2
#> brainwt bodywt
#> <dbl> <dbl>
#> 1 NA 50
#> 2 0.0155 0.48
#> 3 NA 1.35
#> 4 0.00029 0.019
#> 5 0.423 600
#> 6 NA 3.85
#> 7 NA 20.5
#> 8 NA 0.045

194

#> 9 0.07 14
#> 10 0.0982 14.8
#> # i 73 more rows

3. Columns Containing a Substring: Select columns that contain the word “con”:

msleep |>
select(contains("con"))

#> # A tibble: 83 x 1
#> conservation
#> <chr>
#> 1 lc
#> 2 <NA>
#> 3 nt
#> 4 lc
#> 5 domesticated
#> 6 <NA>
#> 7 vu
#> 8 <NA>
#> 9 domesticated
#> 10 lc
#> # i 73 more rows

5.7.2.4 Deselect Columns Using the Minus Sign:

If you want to keep all columns except name and sleep_total:

msleep |>
select(-c(name, sleep_total))

#> # A tibble: 83 x 9
#> genus vore order conservation sleep_rem sleep_cycle awake brainwt bodywt
#> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Acinon~ carni Carn~ lc NA NA 11.9 NA 50
#> 2 Aotus omni Prim~ <NA> 1.8 NA 7 0.0155 0.48
#> 3 Aplodo~ herbi Rode~ nt 2.4 NA 9.6 NA 1.35
#> 4 Blarina omni Sori~ lc 2.3 0.133 9.1 0.00029 0.019
#> 5 Bos herbi Arti~ domesticated 0.7 0.667 20 0.423 600
#> 6 Bradyp~ herbi Pilo~ <NA> 2.2 0.767 9.6 NA 3.85
#> 7 Callor~ carni Carn~ vu 1.4 0.383 15.3 NA 20.5

195

#> 8 Calomys <NA> Rode~ <NA> NA NA 17 NA 0.045
#> 9 Canis carni Carn~ domesticated 2.9 0.333 13.9 0.07 14
#> 10 Capreo~ herbi Arti~ lc NA NA 21 0.0982 14.8
#> # i 73 more rows

You can also use helper functions to deselect columns. For instance, drop all columns starting
with “sleep”

msleep |>
select(-starts_with("sleep"))

#> # A tibble: 83 x 8
#> name genus vore order conservation awake brainwt bodywt
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 Cheetah Acin~ carni Carn~ lc 11.9 NA 50
#> 2 Owl monkey Aotus omni Prim~ <NA> 7 0.0155 0.48
#> 3 Mountain beaver Aplo~ herbi Rode~ nt 9.6 NA 1.35
#> 4 Greater short-tailed s~ Blar~ omni Sori~ lc 9.1 0.00029 0.019
#> 5 Cow Bos herbi Arti~ domesticated 20 0.423 600
#> 6 Three-toed sloth Brad~ herbi Pilo~ <NA> 9.6 NA 3.85
#> 7 Northern fur seal Call~ carni Carn~ vu 15.3 NA 20.5
#> 8 Vesper mouse Calo~ <NA> Rode~ <NA> 17 NA 0.045
#> 9 Dog Canis carni Carn~ domesticated 13.9 0.07 14
#> 10 Roe deer Capr~ herbi Arti~ lc 21 0.0982 14.8
#> # i 73 more rows

5.7.2.5 Using where() with select()

The where() helper function enables you to dynamically select or modify columns in your data.
When used with select(), it allows you to programmatically choose columns based on specific
criteria. For example, to select all numeric columns, you can use where(is.numeric):

msleep |>
select(where(is.numeric))

#> # A tibble: 83 x 6
#> sleep_total sleep_rem sleep_cycle awake brainwt bodywt
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 12.1 NA NA 11.9 NA 50
#> 2 17 1.8 NA 7 0.0155 0.48

196

#> 3 14.4 2.4 NA 9.6 NA 1.35
#> 4 14.9 2.3 0.133 9.1 0.00029 0.019
#> 5 4 0.7 0.667 20 0.423 600
#> 6 14.4 2.2 0.767 9.6 NA 3.85
#> 7 8.7 1.4 0.383 15.3 NA 20.5
#> 8 7 NA NA 17 NA 0.045
#> 9 10.1 2.9 0.333 13.9 0.07 14
#> 10 3 NA NA 21 0.0982 14.8
#> # i 73 more rows

5.7.3 mutate() – Creating or Modifying Columns

The mutate() function is like a magic wand for adding new variables or transforming existing
ones. Use it whenever you need to derive new information from your dataset.

Key Points:

• You can add as many new columns as you need.

• Existing columns can be modified by overwriting them.

5.7.3.1 Creating a New Column:

Sleep is a vital physiological process, but its duration varies widely among mammals4. Under-
standing how sleep duration relates to body weight could reveal insights into the metabolic
and ecological factors influencing sleep. For example:

• Larger mammals may have lower sleep-to-body-weight ratios due to their lower
metabolic rates relative to body size.

• Smaller mammals might have higher sleep-to-body-weight ratios, potentially linked to
their higher metabolic demands.

To explore this, we calculate the ratio of total sleep (sleep_total) to body weight (bodywt)
for each species in the msleep dataset:

msleep |>
select(name, vore, sleep_total, bodywt) |>
mutate(sleep_to_weight = sleep_total / bodywt)

4Siegel, J. M. (2005). Clues to the functions of mammalian sleep. Nature, 437(7063), 1264-1271.

197

#> # A tibble: 83 x 5
#> name vore sleep_total bodywt sleep_to_weight
#> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 Cheetah carni 12.1 50 0.242
#> 2 Owl monkey omni 17 0.48 35.4
#> 3 Mountain beaver herbi 14.4 1.35 10.7
#> 4 Greater short-tailed shrew omni 14.9 0.019 784.
#> 5 Cow herbi 4 600 0.00667
#> 6 Three-toed sloth herbi 14.4 3.85 3.74
#> 7 Northern fur seal carni 8.7 20.5 0.425
#> 8 Vesper mouse <NA> 7 0.045 156.
#> 9 Dog carni 10.1 14 0.721
#> 10 Roe deer herbi 3 14.8 0.203
#> # i 73 more rows

Tip

This ratio provides a standardised measure to compare sleep duration across species with
varying body sizes.

In the same msleep dataset, we suspect that any brain weight greater than 4 is likely an error.
To address this, we:

1. Exclude these suspected outliers by replacing them with NA.

2. Retain valid brain weight values for analysis.

msleep |>
select(name, brainwt) |>
Replace brainwt > 4 with NA
mutate(brainwt_corrected = ifelse(brainwt > 4, NA, brainwt)) |>
Sort by original brain weight in descending order
arrange(desc(brainwt))

#> # A tibble: 83 x 3
#> name brainwt brainwt_corrected
#> <chr> <dbl> <dbl>
#> 1 African elephant 5.71 NA
#> 2 Asian elephant 4.60 NA
#> 3 Human 1.32 1.32
#> 4 Horse 0.655 0.655
#> 5 Chimpanzee 0.44 0.44

198

#> 6 Cow 0.423 0.423
#> 7 Donkey 0.419 0.419
#> 8 Gray seal 0.325 0.325
#> 9 Baboon 0.18 0.18
#> 10 Pig 0.18 0.18
#> # i 73 more rows

Note

1. select(name, brainwt): Focuses on the columns relevant to this analysis: the
species’ name and their brain weight.

2. mutate(brainwt_corrected = ifelse(brainwt > 4, NA, brainwt)):

• Uses ifelse() to create a new column, brainwt_corrected, where any
brainwt above 4 is replaced with NA.

• Values 4 or below remain unchanged.

3. arrange(desc(brainwt)):

• Sorts the data by the original brainwt in descending order, making it easier
to verify the replaced outliers. (You will soon learn more about the arrange()
function.)

To better understand patterns in sleep behaviour, it can be helpful to categorize species into
discrete groups based on their sleep duration. This makes it easier to group species for further
analysis, or explore ecological or evolutionary hypotheses.

For example, we can categorize species as:

• “Long sleepers”: Those that sleep more than 9 hours per day.

• “Short sleepers”: Those that sleep 9 hours or less per day.

We achieve this categorization using the ifelse() function, which allows us to transform the
continuous numeric variable sleep_total into a categorical variable, sleep_category.

msleep |>
select(name, vore, sleep_total) |>
mutate(sleep_category = ifelse(sleep_total > 9, "long", "short"))

#> # A tibble: 83 x 4
#> name vore sleep_total sleep_category
#> <chr> <chr> <dbl> <chr>

199

#> 1 Cheetah carni 12.1 long
#> 2 Owl monkey omni 17 long
#> 3 Mountain beaver herbi 14.4 long
#> 4 Greater short-tailed shrew omni 14.9 long
#> 5 Cow herbi 4 short
#> 6 Three-toed sloth herbi 14.4 long
#> 7 Northern fur seal carni 8.7 short
#> 8 Vesper mouse <NA> 7 short
#> 9 Dog carni 10.1 long
#> 10 Roe deer herbi 3 short
#> # i 73 more rows

Tip

The ifelse() function is a handy tool for converting a numeric column into a categorical
(or discrete) one. As explained earlier, ifelse() works by taking three arguments: a
logical condition, a value to return if the condition is TRUE, and a value to return if
the condition is FALSE. This makes it an efficient way to create new variables or modify
existing ones based on specific criteria.

This categorization opens the door to exploring broader scientific questions:

1. What ecological or metabolic factors correlate with sleep duration?

• For example, are “long sleepers” more likely to be predators, herbivores, or omni-
vores?

2. Do body size or brain size influence sleep duration?

• Smaller animals may tend to sleep more to conserve energy, while larger animals
might sleep less due to lower relative metabolic rates.

3. Are long sleepers more prevalent in certain habitats?

• Does living in safer environments allow for extended sleep?

5.7.3.2 Using mutate() and case_when():

Body weight is often an important ecological indicator, and mammals can be classified into
the following categories based on their weight:

• Heavy: Body weight > 50 kg

• Medium: Body weight > 10 kg but � 50 kg

200

• Light: Body weight � 10 kg

When assigning these categories, the case_when() function provides a more elegant and read-
able solution compared to using nested ifelse() statements. It allows you to handle multiple
conditions cleanly and intuitively. Here’s how it can be used:

msleep |>
select(name, sleep_total, bodywt) |>
mutate(

bodywt_category = case_when(
bodywt > 50 ~ "heavy",
bodywt > 10 ~ "medium",
TRUE ~ "light" # Default for remaining cases

)
)

#> # A tibble: 83 x 4
#> name sleep_total bodywt bodywt_category
#> <chr> <dbl> <dbl> <chr>
#> 1 Cheetah 12.1 50 medium
#> 2 Owl monkey 17 0.48 light
#> 3 Mountain beaver 14.4 1.35 light
#> 4 Greater short-tailed shrew 14.9 0.019 light
#> 5 Cow 4 600 heavy
#> 6 Three-toed sloth 14.4 3.85 light
#> 7 Northern fur seal 8.7 20.5 medium
#> 8 Vesper mouse 7 0.045 light
#> 9 Dog 10.1 14 medium
#> 10 Roe deer 3 14.8 medium
#> # i 73 more rows

We can combine both categorizations into a single dataset to examine potential relationships
between sleep behaviour and body weight. For example, we could ask:

• Are “light” mammals more likely to be “short sleepers”?

To create ordered factors for better control in plots or analyses, we use factor() or the
forcats package:

msleep |>
select(name, sleep_total, bodywt) |>
mutate(

201

sleep_category = ifelse(sleep_total > 9, "long", "short"),
bodywt_discr = case_when(
bodywt > 50 ~ "heavy",
bodywt > 10 ~ "medium",
TRUE ~ "light"

),
Convert to ordered factors
sleep_category = factor(sleep_category, levels = c("short", "long")),
bodywt_discr = factor(bodywt_discr, levels = c("light", "medium", "heavy"))

)

#> # A tibble: 83 x 5
#> name sleep_total bodywt sleep_category bodywt_discr
#> <chr> <dbl> <dbl> <fct> <fct>
#> 1 Cheetah 12.1 50 long medium
#> 2 Owl monkey 17 0.48 long light
#> 3 Mountain beaver 14.4 1.35 long light
#> 4 Greater short-tailed shrew 14.9 0.019 long light
#> 5 Cow 4 600 short heavy
#> 6 Three-toed sloth 14.4 3.85 long light
#> 7 Northern fur seal 8.7 20.5 short medium
#> 8 Vesper mouse 7 0.045 short light
#> 9 Dog 10.1 14 long medium
#> 10 Roe deer 3 14.8 short medium
#> # i 73 more rows

5.7.3.3 Calculating Row-Wise Averages Using mutate()

When analysing mammalian sleep data, researchers may want to compare different sleep met-
rics for each species. For instance:

• REM sleep (sleep_rem) and sleep cycle duration (sleep_cycle) could be combined to
calculate a single representative metric, such as the average of the two values.

• This average can provide a holistic view of each species’ sleep patterns.

However, standard aggregation functions like mean() or sum() operate on entire columns,
summarising all observations at once rather than computing values row by row.

To calculate the average of sleep_rem and sleep_cycle for each species, you can use one of
the following approaches:

1. Explicit Arithmetic: (sleep_rem + sleep_cycle) / 2

202

msleep |>
select(name, sleep_rem, sleep_cycle) |>
mutate(avg_sleep = (sleep_rem + sleep_cycle) / 2)

#> # A tibble: 83 x 4
#> name sleep_rem sleep_cycle avg_sleep
#> <chr> <dbl> <dbl> <dbl>
#> 1 Cheetah NA NA NA
#> 2 Owl monkey 1.8 NA NA
#> 3 Mountain beaver 2.4 NA NA
#> 4 Greater short-tailed shrew 2.3 0.133 1.22
#> 5 Cow 0.7 0.667 0.683
#> 6 Three-toed sloth 2.2 0.767 1.48
#> 7 Northern fur seal 1.4 0.383 0.892
#> 8 Vesper mouse NA NA NA
#> 9 Dog 2.9 0.333 1.62
#> 10 Roe deer NA NA NA
#> # i 73 more rows

2. Using rowwise() and mutate():

msleep |>
select(name, sleep_rem, sleep_cycle) |>
rowwise() |> # Enable row-wise operations
mutate(avg_sleep = mean(c(sleep_rem, sleep_cycle), na.rm = TRUE)) |>
ungroup()

#> # A tibble: 83 x 4
#> name sleep_rem sleep_cycle avg_sleep
#> <chr> <dbl> <dbl> <dbl>
#> 1 Cheetah NA NA NaN
#> 2 Owl monkey 1.8 NA 1.8
#> 3 Mountain beaver 2.4 NA 2.4
#> 4 Greater short-tailed shrew 2.3 0.133 1.22
#> 5 Cow 0.7 0.667 0.683
#> 6 Three-toed sloth 2.2 0.767 1.48
#> 7 Northern fur seal 1.4 0.383 0.892
#> 8 Vesper mouse NA NA NaN
#> 9 Dog 2.9 0.333 1.62
#> 10 Roe deer NA NA NaN
#> # i 73 more rows

203

When you use rowwise(), it is important to call ungroup() afterwards to remove row-wise
grouping and revert to the default, ungrouped state of the data.

5.7.3.4 Using mutate() and across() to Modify Specific Columns

When working with datasets, it is common to encounter situations where you need to apply
the same transformation to multiple columns. For instance, you might want to convert units,
round numeric values, or standardise text. In such cases, the combination of mutate() and
across() from the dplyr package is a powerful tool. These functions allow you to efficiently
select and modify subsets of columns, reducing the need for repetitive code.

The across() function is particularly versatile. It enables you to:

1. Select columns using tidy selection helpers like starts_with(), contains(), or
where().

2. Apply a function to each of the selected columns, making it easy to perform bulk
operations.

We will explore several practical examples using the msleep dataset, which contains infor-
mation about the sleep patterns of mammals. These examples will demonstrate how to use
mutate() and across() to perform common data transformation tasks.

Example 1: Converting Units for Sleep-Related Columns

The msleep dataset includes several columns related to sleep duration, measured in hours.
Suppose you need these values in minutes instead. Rather than manually transforming each
column, you can use across() to apply the conversion to all relevant columns at once 5.

msleep |>
select(name, contains("sleep")) |> # Focus on sleep-related columns
mutate(across(contains("sleep"), ~ .x * 60)) # Multiply each value by 60

#> # A tibble: 83 x 4
#> name sleep_total sleep_rem sleep_cycle
#> <chr> <dbl> <dbl> <dbl>
#> 1 Cheetah 726 NA NA
#> 2 Owl monkey 1020 108 NA
#> 3 Mountain beaver 864 144 NA
#> 4 Greater short-tailed shrew 894 138 8.00
#> 5 Cow 240 42 40.0

5Using the same example, the syntax for across() with column positions would be as follows: msleep |>
select(name, contains("sleep")) |> mutate(across(c(2, 3, 4), ~ .x * 60))

204

#> 6 Three-toed sloth 864 132 46.0
#> 7 Northern fur seal 522 84 23.0
#> 8 Vesper mouse 420 NA NA
#> 9 Dog 606 174 20.0
#> 10 Roe deer 180 NA NA
#> # i 73 more rows

Note

1. select(name, contains("sleep")):

• Keeps the name column (for species identification) and all columns whose
names contain the word “sleep”.

2. mutate(across(contains("sleep"), ~ .x * 60)):

• across(contains("sleep")): Selects all columns containing “sleep” in their
names.

• The formula ~ .x * 60 converts hours to minutes by multiplying each value by
60.

• Uses ~ to define an anonymous function and .x to refer to column values.

This approach is not only concise but also scalable. If new sleep-related columns are added to
the dataset, the same code will automatically include them in the transformation.

Example 2: Rounding Numeric Columns

Another common task is rounding numeric values to a specified number of decimal places. For
example, you might want to round all numeric columns in the msleep dataset to the nearest
integer.

msleep |>
mutate(across(where(is.numeric), round))

#> # A tibble: 83 x 11
#> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Cheet~ Acin~ carni Carn~ lc 12 NA NA 12
#> 2 Owl m~ Aotus omni Prim~ <NA> 17 2 NA 7
#> 3 Mount~ Aplo~ herbi Rode~ nt 14 2 NA 10
#> 4 Great~ Blar~ omni Sori~ lc 15 2 0 9
#> 5 Cow Bos herbi Arti~ domesticated 4 1 1 20
#> 6 Three~ Brad~ herbi Pilo~ <NA> 14 2 1 10

205

#> 7 North~ Call~ carni Carn~ vu 9 1 0 15
#> 8 Vespe~ Calo~ <NA> Rode~ <NA> 7 NA NA 17
#> 9 Dog Canis carni Carn~ domesticated 10 3 0 14
#> 10 Roe d~ Capr~ herbi Arti~ lc 3 NA NA 21
#> # i 73 more rows
#> # i 2 more variables: brainwt <dbl>, bodywt <dbl>

Note

mutate(across(where(is.numeric), round)):

• where(is.numeric) selects all numeric columns.

• The round function is applied to each numeric column, rounding the values to the
nearest integer.

This is particularly useful when preparing data for reporting or visualisation, where overly
precise values can clutter the output.

Example 3: Scaling Numeric Columns to a Range of 0 to 1

Normalising data is a common preprocessing step in data analysis, particularly when features
have different scales. For instance, scaling numeric columns to a range of 0 to 1 ensures
comparability across variables. This is achieved using min-max scaling, defined by the
formula:

𝑥scaled = 𝑥 − min(𝑥)
max(𝑥) − min(𝑥)

Tip

Where:

• min(𝑥) is the minimum value in the column.

• max(𝑥) is the maximum value in the column.

• 𝑥scaled is the normalised value, constrained to the interval [0, 1].

To streamline this process, we encapsulate the formula into a reusable function:

206

Define function for min-max scaling (handles missing values)
min_max_scale <- function(x) {
(x - min(x, na.rm = TRUE)) /

(max(x, na.rm = TRUE) - min(x, na.rm = TRUE))
}

Note

This function:

• Ignores missing values (na.rm = TRUE) to avoid NA propagation.

• Automatically adapts to each column’s unique range.

Apply the function to all numeric columns in the msleep dataset:

msleep |>
mutate(across(where(is.numeric), min_max_scale))

#> # A tibble: 83 x 11
#> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Cheet~ Acin~ carni Carn~ lc 0.567 NA NA 0.433
#> 2 Owl m~ Aotus omni Prim~ <NA> 0.839 0.262 NA 0.161
#> 3 Mount~ Aplo~ herbi Rode~ nt 0.694 0.354 NA 0.306
#> 4 Great~ Blar~ omni Sori~ lc 0.722 0.338 0.0120 0.278
#> 5 Cow Bos herbi Arti~ domesticated 0.117 0.0923 0.398 0.883
#> 6 Three~ Brad~ herbi Pilo~ <NA> 0.694 0.323 0.470 0.306
#> 7 North~ Call~ carni Carn~ vu 0.378 0.2 0.193 0.622
#> 8 Vespe~ Calo~ <NA> Rode~ <NA> 0.283 NA NA 0.717
#> 9 Dog Canis carni Carn~ domesticated 0.456 0.431 0.157 0.544
#> 10 Roe d~ Capr~ herbi Arti~ lc 0.0611 NA NA 0.939
#> # i 73 more rows
#> # i 2 more variables: brainwt <dbl>, bodywt <dbl>

Key Considerations

• Zero-variance columns: If all values in a column are identical, max(x) - min(x)
= 0, resulting in NaN (division by zero).

• Missing values: Columns with only NA values will return NaN.

207

• Interpretability: Scaled values retain the relative relationships in the original
data.

This transformation ensures all numeric values are proportionally mapped to the same range,
simplifying comparisons and improving the performance of machine learning algorithms.

Example 4: Transforming Character Columns

Text data often contains extra whitespace—leading, trailing, or even multiple spaces between
words. This can lead to inconsistencies in your analysis. The str_squish() function from the
stringr package cleans such text by removing extraneous whitespace.

In this example, you will apply str_squish() to all character columns in the msleep dataset:

msleep |>
mutate(across(where(is.character), str_squish))

#> # A tibble: 83 x 11
#> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Cheet~ Acin~ carni Carn~ lc 12.1 NA NA 11.9
#> 2 Owl m~ Aotus omni Prim~ <NA> 17 1.8 NA 7
#> 3 Mount~ Aplo~ herbi Rode~ nt 14.4 2.4 NA 9.6
#> 4 Great~ Blar~ omni Sori~ lc 14.9 2.3 0.133 9.1
#> 5 Cow Bos herbi Arti~ domesticated 4 0.7 0.667 20
#> 6 Three~ Brad~ herbi Pilo~ <NA> 14.4 2.2 0.767 9.6
#> 7 North~ Call~ carni Carn~ vu 8.7 1.4 0.383 15.3
#> 8 Vespe~ Calo~ <NA> Rode~ <NA> 7 NA NA 17
#> 9 Dog Canis carni Carn~ domesticated 10.1 2.9 0.333 13.9
#> 10 Roe d~ Capr~ herbi Arti~ lc 3 NA NA 21
#> # i 73 more rows
#> # i 2 more variables: brainwt <dbl>, bodywt <dbl>

Note

• where(is.character): Selects all character columns.

• str_squish: Removes extra whitespace from the text in these columns.

For example, if a column contains the value " African elephant ", it will be cleaned
up to "African elephant".

208

5.7.4 filter() – Selecting Rows Based on Conditions

The filter() function allows you to keep rows that meet specific criteria. Think of it as a
way to zoom in on the part of your dataset that matters most.

Key Points:

• filter() takes a logical condition (e.g., gender == "female") and keeps rows where
the condition is TRUE.

• You can use filter() to subset numeric variables based on their values. Common
comparison operators include:

– > (greater than)

– >= (greater than or equal to)

– < (less than)

– <= (less than or equal to)

– == (equal to)

– != (not equal to)

For details on these operators, see Chapter 1.6.4.

• To filter rows based on multiple conditions, you can use logical operators:

– & or , (AND): Ensures all conditions are true.

– | (OR): Keeps rows where at least one condition is true.

– ! (NOT): Negates a condition, keeping rows where it is false.

5.7.4.1 Basic row filters

Let’s find all animals that sleep more than 10 hours:

msleep |>
select(name, sleep_total) |>
filter(sleep_total > 10)

209

#> # A tibble: 44 x 2
#> name sleep_total
#> <chr> <dbl>
#> 1 Cheetah 12.1
#> 2 Owl monkey 17
#> 3 Mountain beaver 14.4
#> 4 Greater short-tailed shrew 14.9
#> 5 Three-toed sloth 14.4
#> 6 Dog 10.1
#> 7 Chinchilla 12.5
#> 8 Star-nosed mole 10.3
#> 9 Long-nosed armadillo 17.4
#> 10 North American Opossum 18
#> # i 34 more rows

To select a range of values, you can use two logical conditions. For example, to filter all animals
with a total sleep time between 9 and 16 hours, you could use:

msleep |>
select(name, sleep_total) |>
filter(sleep_total >= 9, sleep_total <= 16)

#> # A tibble: 46 x 2
#> name sleep_total
#> <chr> <dbl>
#> 1 Cheetah 12.1
#> 2 Mountain beaver 14.4
#> 3 Greater short-tailed shrew 14.9
#> 4 Three-toed sloth 14.4
#> 5 Dog 10.1
#> 6 Guinea pig 9.4
#> 7 Grivet 10
#> 8 Chinchilla 12.5
#> 9 Star-nosed mole 10.3
#> 10 Lesser short-tailed shrew 9.1
#> # i 36 more rows

However, there is a more concise way to achieve the same result using the between() func-
tion6:

6The between() function simplifies the code and improves readability by combining the range condition into
a single statement.

210

msleep |>
select(name, sleep_total) |>
filter(between(sleep_total, 9, 16))

#> # A tibble: 46 x 2
#> name sleep_total
#> <chr> <dbl>
#> 1 Cheetah 12.1
#> 2 Mountain beaver 14.4
#> 3 Greater short-tailed shrew 14.9
#> 4 Three-toed sloth 14.4
#> 5 Dog 10.1
#> 6 Guinea pig 9.4
#> 7 Grivet 10
#> 8 Chinchilla 12.5
#> 9 Star-nosed mole 10.3
#> 10 Lesser short-tailed shrew 9.1
#> # i 36 more rows

5.7.4.2 Filtering Based on Exact Character Variable Matches

When working with character variables, you can filter rows based on exact matches, exclu-
sions, or membership in specific groups. Below are practical examples of how to handle these
scenarios effectively:

1. Select Rows with an Exact Match

To filter a specific group of animals, use the == comparison operator. For example, to select
only carnivores:

msleep |>
select(name, vore, sleep_total) |>
filter(vore == "carni")

#> # A tibble: 19 x 3
#> name vore sleep_total
#> <chr> <chr> <dbl>
#> 1 Cheetah carni 12.1
#> 2 Northern fur seal carni 8.7
#> 3 Dog carni 10.1
#> 4 Long-nosed armadillo carni 17.4

211

#> 5 Domestic cat carni 12.5
#> 6 Pilot whale carni 2.7
#> 7 Gray seal carni 6.2
#> 8 Thick-tailed opposum carni 19.4
#> 9 Slow loris carni 11
#> 10 Northern grasshopper mouse carni 14.5
#> 11 Tiger carni 15.8
#> 12 Jaguar carni 10.4
#> 13 Lion carni 13.5
#> 14 Caspian seal carni 3.5
#> 15 Common porpoise carni 5.6
#> 16 Bottle-nosed dolphin carni 5.2
#> 17 Genet carni 6.3
#> 18 Arctic fox carni 12.5
#> 19 Red fox carni 9.8

2. Exclude Rows Using !=

To exclude rows with a specific value, use the != operator. For example, to exclude omni-
vores:

msleep |>
select(name, vore, sleep_total) |>
filter(vore != "omni")

#> # A tibble: 56 x 3
#> name vore sleep_total
#> <chr> <chr> <dbl>
#> 1 Cheetah carni 12.1
#> 2 Mountain beaver herbi 14.4
#> 3 Cow herbi 4
#> 4 Three-toed sloth herbi 14.4
#> 5 Northern fur seal carni 8.7
#> 6 Dog carni 10.1
#> 7 Roe deer herbi 3
#> 8 Goat herbi 5.3
#> 9 Guinea pig herbi 9.4
#> 10 Chinchilla herbi 12.5
#> # i 46 more rows

3. Filter for Multiple Values Using %in%

212

If you want to filter rows where a variable matches one of multiple values, use the %in% operator.
For example, to select animals belonging to the orders Primates or Rodentia:

msleep |>
select(name, sleep_total, order) |>
filter(order %in% c("Primates", "Rodentia"))

#> # A tibble: 34 x 3
#> name sleep_total order
#> <chr> <dbl> <chr>
#> 1 Owl monkey 17 Primates
#> 2 Mountain beaver 14.4 Rodentia
#> 3 Vesper mouse 7 Rodentia
#> 4 Guinea pig 9.4 Rodentia
#> 5 Grivet 10 Primates
#> 6 Chinchilla 12.5 Rodentia
#> 7 African giant pouched rat 8.3 Rodentia
#> 8 Patas monkey 10.9 Primates
#> 9 Western american chipmunk 14.9 Rodentia
#> 10 Galago 9.8 Primates
#> # i 24 more rows

4. Exclude Multiple Groups Using !%in%

To exclude rows belonging to specific groups, negate the %in% operator by using ! at the
beginning of your filter. For example, to exclude animals in the orders Rodentia, Carnivora,
and Primates:

msleep |>
select(name, order, sleep_total) |>
filter(!order %in% c("Rodentia", "Carnivora", "Primates"))

#> # A tibble: 37 x 3
#> name order sleep_total
#> <chr> <chr> <dbl>
#> 1 Greater short-tailed shrew Soricomorpha 14.9
#> 2 Cow Artiodactyla 4
#> 3 Three-toed sloth Pilosa 14.4
#> 4 Roe deer Artiodactyla 3
#> 5 Goat Artiodactyla 5.3
#> 6 Star-nosed mole Soricomorpha 10.3
#> 7 Lesser short-tailed shrew Soricomorpha 9.1

213

#> 8 Long-nosed armadillo Cingulata 17.4
#> 9 Tree hyrax Hyracoidea 5.3
#> 10 North American Opossum Didelphimorphia 18
#> # i 27 more rows

Tip

In R, you must place the negation operator (!) before the variable you want to filter
with when using the %in% operator. For example, instead of writing:

filter(order !%in% c("Rodentia", "Carnivora", "Primates"))

—which is invalid—write it as:

filter(!order %in% c("Rodentia", "Carnivora", "Primates"))

This ensures that the filter correctly excludes the specified groups.

5.7.4.3 Filtering Rows Based on Regular Expressions

The filtering methods discussed earlier work well when you are matching the entire content of
a variable. However, in many cases, you may need to filter rows based on partial matches
within a string. To achieve this, you can use functions that evaluate regular expressions and
return Boolean values (TRUE or FALSE). Rows where the condition is TRUE will be retained.

There are two ways to do this:

1. grepl() (from base R):

• Checks if a pattern exists in a string and returns a logical vector.

• Often combined with tolower() to make matching case-insensitive.

2. str_detect() (from the stringr package):

• A more intuitive function for detecting patterns in strings.

• Often combined with str_to_lower() to make matching case-insensitive.

• Part of the tidyverse, making it consistent with dplyr workflows.

214

Note

R is case-sensitive by default. For instance:

• Using filter(str_detect(name, pattern = "mouse")) would exclude rows with
"Mouse" because of the difference in case.

To avoid missing such matches, it’s a good practice to convert the text to lowercase (or
uppercase) using str_to_lower() (or str_to_upper()) before performing the match.

In the following example, we filter rows where the name column contains the substring “mouse,”
regardless of case:

msleep |>
select(name, sleep_total) |>
filter(str_detect(str_to_lower(name), pattern = "mouse"))

#> # A tibble: 5 x 2
#> name sleep_total
#> <chr> <dbl>
#> 1 Vesper mouse 7
#> 2 House mouse 12.5
#> 3 Northern grasshopper mouse 14.5
#> 4 Deer mouse 11.5
#> 5 African striped mouse 8.7

5.7.4.4 Filtering with Multiple Conditions

The filter() function not only allows filtering based on single conditions but also supports
combining multiple conditions using logical operators. These operators—AND, OR, NOT, and
XOR—as summarized in Table 5.1, provide the flexibility to create complex filtering logic tai-
lored to your data analysis needs.

Table 5.1: Logical Operators for Filtering Data in R

Example Operator Description Example Usage
1 , or & (AND) Both conditions must

be true for a row to
be returned.

filter(condition1,
condition2) or
filter(condition1
& condition2)

215

Example Operator Description Example Usage
2 | (OR) At least one

condition must be
true for a row to be
included.

filter(condition1
|condition2)

3 ! (NOT) The condition must
be false for a row to
be included.

filter(!condition1)

4 xor() Only one condition
must be true, and
not both.

filter(xor(condition1,
condition2))

Example 1:

Filter Animals That Are Carnivores and Sleep More Than 10 Hours

msleep |>
filter(vore == "carni", sleep_total > 10)

#> # A tibble: 11 x 11
#> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Cheet~ Acin~ carni Carn~ lc 12.1 NA NA 11.9
#> 2 Dog Canis carni Carn~ domesticated 10.1 2.9 0.333 13.9
#> 3 Long-~ Dasy~ carni Cing~ lc 17.4 3.1 0.383 6.6
#> 4 Domes~ Felis carni Carn~ domesticated 12.5 3.2 0.417 11.5
#> 5 Thick~ Lutr~ carni Dide~ lc 19.4 6.6 NA 4.6
#> 6 Slow ~ Nyct~ carni Prim~ <NA> 11 NA NA 13
#> 7 North~ Onyc~ carni Rode~ lc 14.5 NA NA 9.5
#> 8 Tiger Pant~ carni Carn~ en 15.8 NA NA 8.2
#> 9 Jaguar Pant~ carni Carn~ nt 10.4 NA NA 13.6
#> 10 Lion Pant~ carni Carn~ vu 13.5 NA NA 10.5
#> 11 Arcti~ Vulp~ carni Carn~ <NA> 12.5 NA NA 11.5
#> # i 2 more variables: brainwt <dbl>, bodywt <dbl>

Example 2:

Filter Animals That Are Omnivores or Sleep Less Than 8 Hours

msleep |>
filter(vore == "omni" | sleep_total < 8)

216

#> # A tibble: 41 x 11
#> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Owl m~ Aotus omni Prim~ <NA> 17 1.8 NA 7
#> 2 Great~ Blar~ omni Sori~ lc 14.9 2.3 0.133 9.1
#> 3 Cow Bos herbi Arti~ domesticated 4 0.7 0.667 20
#> 4 Vespe~ Calo~ <NA> Rode~ <NA> 7 NA NA 17
#> 5 Roe d~ Capr~ herbi Arti~ lc 3 NA NA 21
#> 6 Goat Capri herbi Arti~ lc 5.3 0.6 NA 18.7
#> 7 Grivet Cerc~ omni Prim~ lc 10 0.7 NA 14
#> 8 Star-~ Cond~ omni Sori~ lc 10.3 2.2 NA 13.7
#> 9 Afric~ Cric~ omni Rode~ <NA> 8.3 2 NA 15.7
#> 10 Lesse~ Cryp~ omni Sori~ lc 9.1 1.4 0.15 14.9
#> # i 31 more rows
#> # i 2 more variables: brainwt <dbl>, bodywt <dbl>

Example 3:

Filter Animals That Are Not Omnivores and Sleep More Than 8 Hours

msleep |>
filter(!vore == "herbi", sleep_total > 8)

#> # A tibble: 37 x 11
#> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Cheet~ Acin~ carni Carn~ lc 12.1 NA NA 11.9
#> 2 Owl m~ Aotus omni Prim~ <NA> 17 1.8 NA 7
#> 3 Great~ Blar~ omni Sori~ lc 14.9 2.3 0.133 9.1
#> 4 North~ Call~ carni Carn~ vu 8.7 1.4 0.383 15.3
#> 5 Dog Canis carni Carn~ domesticated 10.1 2.9 0.333 13.9
#> 6 Grivet Cerc~ omni Prim~ lc 10 0.7 NA 14
#> 7 Star-~ Cond~ omni Sori~ lc 10.3 2.2 NA 13.7
#> 8 Afric~ Cric~ omni Rode~ <NA> 8.3 2 NA 15.7
#> 9 Lesse~ Cryp~ omni Sori~ lc 9.1 1.4 0.15 14.9
#> 10 Long-~ Dasy~ carni Cing~ lc 17.4 3.1 0.383 6.6
#> # i 27 more rows
#> # i 2 more variables: brainwt <dbl>, bodywt <dbl>

Example 4:

Filter Animals That Are Either Carnivores or Sleep More Than 16 Hours, But Not Both

217

msleep |>
filter(xor(vore == "carni", sleep_total > 16))

#> # A tibble: 23 x 11
#> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Cheet~ Acin~ carni Carn~ lc 12.1 NA NA 11.9
#> 2 Owl m~ Aotus omni Prim~ <NA> 17 1.8 NA 7
#> 3 North~ Call~ carni Carn~ vu 8.7 1.4 0.383 15.3
#> 4 Dog Canis carni Carn~ domesticated 10.1 2.9 0.333 13.9
#> 5 North~ Dide~ omni Dide~ lc 18 4.9 0.333 6
#> 6 Big b~ Epte~ inse~ Chir~ lc 19.7 3.9 0.117 4.3
#> 7 Domes~ Felis carni Carn~ domesticated 12.5 3.2 0.417 11.5
#> 8 Pilot~ Glob~ carni Ceta~ cd 2.7 0.1 NA 21.4
#> 9 Gray ~ Hali~ carni Carn~ lc 6.2 1.5 NA 17.8
#> 10 Littl~ Myot~ inse~ Chir~ <NA> 19.9 2 0.2 4.1
#> # i 13 more rows
#> # i 2 more variables: brainwt <dbl>, bodywt <dbl>

Key Tips

• Order Matters: R evaluates conditions left to right in a filter() statement.

• Combine Freely: You can mix AND, OR, and NOT to form highly specific filters.

• Readability: Use parentheses for complex conditions to make them easier to un-
derstand.

For complex conditions combining AND (&), OR (|), and NOT (!), the order of evaluation is
determined by standard precedence rules unless overridden with parentheses.

Precedence Order:

1. NOT (!) is evaluated first.

2. AND (& or ,) is evaluated second.

3. OR (|) is evaluated last.

Example 5:

Filter animals that are either herbivores or omnivores and have a total sleep time of more than
10 hours.

218

msleep |>
filter((vore == "herbi" | vore == "omni") & sleep_total > 10)

#> # A tibble: 25 x 11
#> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Owl m~ Aotus omni Prim~ <NA> 17 1.8 NA 7
#> 2 Mount~ Aplo~ herbi Rode~ nt 14.4 2.4 NA 9.6
#> 3 Great~ Blar~ omni Sori~ lc 14.9 2.3 0.133 9.1
#> 4 Three~ Brad~ herbi Pilo~ <NA> 14.4 2.2 0.767 9.6
#> 5 Chinc~ Chin~ herbi Rode~ domesticated 12.5 1.5 0.117 11.5
#> 6 Star-~ Cond~ omni Sori~ lc 10.3 2.2 NA 13.7
#> 7 North~ Dide~ omni Dide~ lc 18 4.9 0.333 6
#> 8 Europ~ Erin~ omni Erin~ lc 10.1 3.5 0.283 13.9
#> 9 Patas~ Eryt~ omni Prim~ lc 10.9 1.1 NA 13.1
#> 10 Weste~ Euta~ herbi Rode~ <NA> 14.9 NA NA 9.1
#> # i 15 more rows
#> # i 2 more variables: brainwt <dbl>, bodywt <dbl>

If the parentheses were omitted, the conditions could be misinterpreted, leading to unintended
results.

5.7.4.5 Filtering Out Empty Rows

Missing values (NA) in datasets can disrupt analysis, so it is often necessary to remove rows
with missing values in specific columns. This can be done using the is.na() function within
a filter() statement.

1. Select Rows Where a Column Has NA Values

To display rows where the conservation column has missing values (NA):

msleep |>
select(name, conservation:sleep_cycle) |>
filter(is.na(conservation))

#> # A tibble: 29 x 5
#> name conservation sleep_total sleep_rem sleep_cycle
#> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 "Owl monkey" <NA> 17 1.8 NA
#> 2 "Three-toed sloth" <NA> 14.4 2.2 0.767

219

#> 3 "Vesper mouse" <NA> 7 NA NA
#> 4 "African giant pouched rat" <NA> 8.3 2 NA
#> 5 "Western american chipmunk" <NA> 14.9 NA NA
#> 6 "Galago" <NA> 9.8 1.1 0.55
#> 7 "Human" <NA> 8 1.9 1.5
#> 8 "Macaque" <NA> 10.1 1.2 0.75
#> 9 "Vole " <NA> 12.8 NA NA
#> 10 "Little brown bat" <NA> 19.9 2 0.2
#> # i 19 more rows

2. Remove Rows Where a Column Has NA Values

To exclude rows where the conservation column is missing, negate the is.na() function
using !:

msleep |>
select(name, conservation:sleep_cycle) |>
filter(!is.na(conservation))

#> # A tibble: 54 x 5
#> name conservation sleep_total sleep_rem sleep_cycle
#> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 Cheetah lc 12.1 NA NA
#> 2 Mountain beaver nt 14.4 2.4 NA
#> 3 Greater short-tailed shrew lc 14.9 2.3 0.133
#> 4 Cow domesticated 4 0.7 0.667
#> 5 Northern fur seal vu 8.7 1.4 0.383
#> 6 Dog domesticated 10.1 2.9 0.333
#> 7 Roe deer lc 3 NA NA
#> 8 Goat lc 5.3 0.6 NA
#> 9 Guinea pig domesticated 9.4 0.8 0.217
#> 10 Grivet lc 10 0.7 NA
#> # i 44 more rows

3. Filtering Multiple Columns for Missing Values

To remove rows with missing values across multiple columns, you can combine multiple
is.na() checks:

msleep |>
select(name, conservation, sleep_total) |>
filter(!is.na(conservation), !is.na(sleep_total))

220

#> # A tibble: 54 x 3
#> name conservation sleep_total
#> <chr> <chr> <dbl>
#> 1 Cheetah lc 12.1
#> 2 Mountain beaver nt 14.4
#> 3 Greater short-tailed shrew lc 14.9
#> 4 Cow domesticated 4
#> 5 Northern fur seal vu 8.7
#> 6 Dog domesticated 10.1
#> 7 Roe deer lc 3
#> 8 Goat lc 5.3
#> 9 Guinea pig domesticated 9.4
#> 10 Grivet lc 10
#> # i 44 more rows

4. Using if_any() or if_all() for Cleaner Filtering

The if_any() and if_all() functions from dplyr offer a more concise way to handle missing
values across multiple columns:

• a. Remove Rows with NA in Any Selected Column

This keeps rows where at least one of the specified columns (conservation or sleep_total)
is not NA:

msleep |>
select(name, conservation, sleep_total) |>
filter(if_any(c(conservation, sleep_total), ~ !is.na(.)))

#> # A tibble: 83 x 3
#> name conservation sleep_total
#> <chr> <chr> <dbl>
#> 1 Cheetah lc 12.1
#> 2 Owl monkey <NA> 17
#> 3 Mountain beaver nt 14.4
#> 4 Greater short-tailed shrew lc 14.9
#> 5 Cow domesticated 4
#> 6 Three-toed sloth <NA> 14.4
#> 7 Northern fur seal vu 8.7
#> 8 Vesper mouse <NA> 7
#> 9 Dog domesticated 10.1
#> 10 Roe deer lc 3
#> # i 73 more rows

221

• b. Remove Rows with NA in All Selected Columns

This keeps rows where all the specified columns are not NA:

msleep |>
select(name, conservation, sleep_total) |>
filter(if_all(c(conservation, sleep_total), ~ !is.na(.)))

#> # A tibble: 54 x 3
#> name conservation sleep_total
#> <chr> <chr> <dbl>
#> 1 Cheetah lc 12.1
#> 2 Mountain beaver nt 14.4
#> 3 Greater short-tailed shrew lc 14.9
#> 4 Cow domesticated 4
#> 5 Northern fur seal vu 8.7
#> 6 Dog domesticated 10.1
#> 7 Roe deer lc 3
#> 8 Goat lc 5.3
#> 9 Guinea pig domesticated 9.4
#> 10 Grivet lc 10
#> # i 44 more rows

Important

By filtering out rows with missing values, you ensure that your analysis is accurate, clean,
and focused on complete data.

5.7.5 arrange() – Reordering Rows

The arrange() function lets you sort rows in a dataset based on the values in one or more
columns. Sorting can be ascending or descending.

Key Points:

• By default, rows are sorted in ascending order.

• To sort in descending order, use the desc() function

Example 1: Sort by Total Sleep Time (Ascending)

Suppose you want to focus on species belonging to the orders Rodentia, Carnivora, and
Primates. After filtering these groups, you can arrange the rows by their total sleep time
(sleep_total) to identify species that sleep the least.

222

Total sleep in ascending order
msleep |>
select(name, order, sleep_total) |>
filter(order %in% c("Rodentia", "Carnivora", "Primates")) |>
arrange(sleep_total)

#> # A tibble: 46 x 3
#> name order sleep_total
#> <chr> <chr> <dbl>
#> 1 Caspian seal Carnivora 3.5
#> 2 Gray seal Carnivora 6.2
#> 3 Genet Carnivora 6.3
#> 4 Vesper mouse Rodentia 7
#> 5 Degu Rodentia 7.7
#> 6 Human Primates 8
#> 7 African giant pouched rat Rodentia 8.3
#> 8 Northern fur seal Carnivora 8.7
#> 9 African striped mouse Rodentia 8.7
#> 10 Guinea pig Rodentia 9.4
#> # i 36 more rows

Example 2: Sort by Total Sleep Time (Descending)
To identify the species that sleep the most, you can sort the same filtered dataset in descending
order of sleep_total:

Total sleep in descending order
msleep |>
select(name, order, sleep_total) |>
filter(order %in% c("Rodentia", "Carnivora", "Primates")) |>
arrange(desc(sleep_total))

#> # A tibble: 46 x 3
#> name order sleep_total
#> <chr> <chr> <dbl>
#> 1 Owl monkey Primates 17
#> 2 Arctic ground squirrel Rodentia 16.6
#> 3 Golden-mantled ground squirrel Rodentia 15.9
#> 4 Tiger Carnivora 15.8
#> 5 Eastern american chipmunk Rodentia 15.8
#> 6 Western american chipmunk Rodentia 14.9
#> 7 Round-tailed muskrat Rodentia 14.6

223

#> 8 Northern grasshopper mouse Rodentia 14.5
#> 9 Mountain beaver Rodentia 14.4
#> 10 Golden hamster Rodentia 14.3
#> # i 36 more rows

5.7.6 slice() – Selecting Rows by Position

The slice() function is a simple and efficient way to select rows based on their numerical
position in your dataset7. Unlike functions that filter rows based on the content of columns,
slice() simply picks rows by their numeric index. There are several helpful variants of this
function that you might find useful:

• slice_head(): Selects the first n rows.
• slice_tail(): Selects the last n rows.
• slice_sample(): Randomly selects a specified number of rows.
• slice_min() and slice_max(): Select rows with the minimum or maximum values of

a given variable.

Example 1: Select the First 5 Rows

Imagine you wish to quickly inspect the top entries from species belonging to the orders
Rodentia, Carnivora, and Primates. With slice_head(), you can easily view the first 5 rows
after filtering and selecting the relevant columns.

Selecting the first 5 rows
msleep |>
select(name, order, sleep_total) |>
filter(order %in% c("Rodentia", "Carnivora", "Primates")) |>
slice_head(n = 5)

#> # A tibble: 5 x 3
#> name order sleep_total
#> <chr> <chr> <dbl>
#> 1 Cheetah Carnivora 12.1
#> 2 Owl monkey Primates 17
#> 3 Mountain beaver Rodentia 14.4
#> 4 Northern fur seal Carnivora 8.7
#> 5 Vesper mouse Rodentia 7

7While slice() selects rows based on their numeric position (e.g., the first or last few rows), without reordering
the entire dataset, the arrange() function is used to reorder all rows in the dataset according to the values
of one or more specified columns.

224

Example 2: Select the Last 5 Rows

Similarly, if you are interested in looking at the bottom entries of the same group of species,
you can use slice_tail() to view the last 5 rows.

Selecting the last 5 rows
msleep |>
select(name, order, sleep_total) |>
filter(order %in% c("Rodentia", "Carnivora", "Primates")) |>
slice_tail(n = 5)

#> # A tibble: 5 x 3
#> name order sleep_total
#> <chr> <chr> <dbl>
#> 1 Golden-mantled ground squirrel Rodentia 15.9
#> 2 Eastern american chipmunk Rodentia 15.8
#> 3 Genet Carnivora 6.3
#> 4 Arctic fox Carnivora 12.5
#> 5 Red fox Carnivora 9.8

Tip

Both slice_head() and slice_tail() are very useful when you want to quickly check
the beginning or end of a filtered dataset, especially when dealing with large datasets.

Example 3: Identify Top 5 Animals by Brain-to-Body Weight Ratio Using
slice_max()

Suppose you want to identify the top five animals with the highest brain-to-body weight ratio
among those that weigh more than 5 kg and have available brain weight data. First, filter the
dataset to include only animals meeting these criteria. Then, calculate the ratio by dividing
brainwt by bodywt. Finally, the slice_max() function will help you extract the five animals
with the highest ratios.

msleep |>
filter(bodywt > 5, !is.na(brainwt)) |>
mutate(brain_to_body_ratio = brainwt / bodywt) |>
slice_max(brain_to_body_ratio, n = 5)

#> # A tibble: 5 x 12
#> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

225

#> 1 Macaque Maca~ omni Prim~ <NA> 10.1 1.2 0.75 13.9
#> 2 Human Homo omni Prim~ <NA> 8 1.9 1.5 16
#> 3 Patas ~ Eryt~ omni Prim~ lc 10.9 1.1 NA 13.1
#> 4 Chimpa~ Pan omni Prim~ <NA> 9.7 1.4 1.42 14.3
#> 5 Baboon Papio omni Prim~ <NA> 9.4 1 0.667 14.6
#> # i 3 more variables: brainwt <dbl>, bodywt <dbl>, brain_to_body_ratio <dbl>

Example 4: Identify Bottom 3 Species by REM Sleep Using slice_min()

Suppose you want to find out which species have the least amount of REM sleep among those
in the orders Rodentia, Carnivora, and Primates. The slice_min() function will help you
extract the three species with the minimum REM sleep values.

msleep |>
select(name, order, sleep_rem) |>
filter(order %in% c("Rodentia", "Carnivora", "Primates")) |>
slice_min(sleep_rem, n = 3)

#> # A tibble: 3 x 3
#> name order sleep_rem
#> <chr> <chr> <dbl>
#> 1 Caspian seal Carnivora 0.4
#> 2 Grivet Primates 0.7
#> 3 Guinea pig Rodentia 0.8

Tip

When you use slice_min() or slice_max(), the rows returned are already sorted by
the specified variable (ascending for slice_min() and descending for slice_max()). You
only need to use arrange() if you want to apply a different sorting order than the default.

5.7.7 summarise() – Aggregating Data

The summarise() function is used to create summary statistics by collapsing data into single
values, such as calculating the minimum, maximum, mean, median, standard deviation, sum,
or count for specific variables.

To use summarise(), define a new column name, followed by the = sign and the summary
calculation:
new_column = function(variable). You can include multiple summary functions within a
single summarise() statement.

Key Points:

226

• Use it to compute one or more summary statistics.

• The functions summarise() and summarize() are interchangeable

• It is often used with group_by() to generate summaries by groups within the dataset.

Example: Summarising the Entire Dataset

To calculate the total number of animals, the average sleep time, and the maximum sleep time
across all species in the msleep dataset:

msleep |>
summarise(

n = n(),
average = mean(sleep_total),
maximum = max(sleep_total)

)

#> # A tibble: 1 x 3
#> n average maximum
#> <int> <dbl> <dbl>
#> 1 83 10.4 19.9

Note

The summarise() function works with various aggregate functions, including:

• n(): Number of observations.

• n_distinct(var): Number of unique values in a variable.

• Arithmetic functions: sum(var), max(var), min(var).

• Statistical functions: mean(var), median(var), sd(var), IQR(var).

In most cases, we don’t just want to summarise the whole data table, but we want to get
summaries by a group.

5.7.8 group_by() – Working with Groups

On its own, the group_by() function doesn’t perform any operation. However, when combined
with functions like summarise() or mutate(), it becomes a powerful tool for splitting data
into groups and applying operations to each group separately.

Key Points:

227

• Groups can be based on one or multiple variables.

• After grouping, any operation is applied independently to each group.

• The results are combined into a single data frame.

Figure 5.5 below illustrates the group by strategy:

Figure 5.5: Data Aggregation and Group Operations

Example 2: Summarising by Groups

To generate summaries for specific groups, combine summarise() with group_by():

msleep |>
group_by(order) |>
summarise(

n = n(),
average_sleep = mean(sleep_total, na.rm = TRUE),
maximum_sleep = max(sleep_total, na.rm = TRUE)

)

#> # A tibble: 19 x 4
#> order n average_sleep maximum_sleep
#> <chr> <int> <dbl> <dbl>
#> 1 Afrosoricida 1 15.6 15.6
#> 2 Artiodactyla 6 4.52 9.1
#> 3 Carnivora 12 10.1 15.8
#> 4 Cetacea 3 4.5 5.6
#> 5 Chiroptera 2 19.8 19.9
#> 6 Cingulata 2 17.8 18.1
#> 7 Didelphimorphia 2 18.7 19.4
#> 8 Diprotodontia 2 12.4 13.7

228

#> 9 Erinaceomorpha 2 10.2 10.3
#> 10 Hyracoidea 3 5.67 6.3
#> 11 Lagomorpha 1 8.4 8.4
#> 12 Monotremata 1 8.6 8.6
#> 13 Perissodactyla 3 3.47 4.4
#> 14 Pilosa 1 14.4 14.4
#> 15 Primates 12 10.5 17
#> 16 Proboscidea 2 3.6 3.9
#> 17 Rodentia 22 12.5 16.6
#> 18 Scandentia 1 8.9 8.9
#> 19 Soricomorpha 5 11.1 14.9

Note

In this example:

• n: Number of species in each group.

• average_sleep: Average sleep time for each group, ignoring NA values (na.rm =
TRUE).

• maximum_sleep: Maximum sleep time for each group, ignoring NA values.

Using summarise() with or without group_by() helps you aggregate and summarize your
data efficiently, making it easier to extract meaningful insights from your dataset.

5.7.9 Combining All the Verbs:

Let’s tackle a realistic problem by chaining the verbs you’ve learned together. For this exam-
ple, we’ll use the penguins dataset (from the palmerpenguins package) to answer a specific
question:

Task:

Identify the top 5 penguins on Dream Island with flipper lengths exceeding 200 mm. Calculate
their bill aspect ratio (bill length ÷ bill depth) and display the results sorted by this ratio.

Load the dataset
penguins <- palmerpenguins::penguins

Perform the analysis
penguins |>
filter(island == "Dream" & flipper_length_mm > 200) |>

229

mutate(bill_aspect_ratio = bill_length_mm / bill_depth_mm) |>
slice_max(bill_aspect_ratio, n = 5) |>
select(species, flipper_length_mm, bill_aspect_ratio)

#> # A tibble: 5 x 3
#> species flipper_length_mm bill_aspect_ratio
#> <fct> <int> <dbl>
#> 1 Chinstrap 201 2.87
#> 2 Chinstrap 207 2.82
#> 3 Chinstrap 201 2.75
#> 4 Chinstrap 203 2.71
#> 5 Chinstrap 201 2.71

Tip

This code performs the following steps:

1. Filter: Retains only penguins located on Dream Island with a flipper length greater
than 200 mm.

2. Mutate: Calculates the bill_aspect_ratio by dividing bill_length_mm by
bill_depth_mm.

3. Slice Max: Selects the top 5 penguins with the highest bill aspect ratios.

4. Select: Displays only the columns for species, flipper length, and bill aspect ratio.

5.7.10 Exercise 5.2.1: Top 5 Carnivorous Animals

Now, let’s extend your skills with a new challenge. Using the msleep dataset, identify the top
5 carnivorous animals that sleep the most and calculate their sleep-to-weight ratio to
understand how sleep duration scales with body size.

Task: Complete the following code by replacing the placeholders (...) with the correct
values:

msleep |>
filter(vore == ...) |>
mutate(sleep_to_weight = ... / ...) |>
select(name, sleep_total, sleep_to_weight) |>
slice_max(sleep_total, n = ---)

230

Instructions

1. Replace ... with the appropriate filtering criteria and calculations.

2. Ensure the final code filters for carnivores, calculates the sleep_to-weight ratio,
and returns the top 5 animals that sleep the most.

See the Solution to Exercise 5.2.1

5.7.11 Exploring More Functions in dplyr

The dplyr package offers a wealth of functions to simplify data manipulation, enabling you
to efficiently clean, transform, and analyze data. In addition to the core verbs (filter(),
select(), mutate(), arrange(), summarize()), there are other incredibly useful functions
such as:

1. rename(): Rename columns in your dataset.

2. distinct(): Extract unique rows or values.

3. count(): Count occurrences of unique values in a variable.

4. relocate(): Reorder or reposition columns for better organization.

Table 5.2: Summary of other Functions in dplyr

Function Purpose Example Usage
rename() Rename columns to more

meaningful names
rename(new_name =
old_name)

distinct() Find unique rows or specific
values

distinct(column1,
column2)

count() Count the frequency of
unique values

count(column_name)

relocate() Reorder columns for better
organization

relocate(column_name,
.before =
another_column)

Let’s explore each of the functions in Table 5.2 in detail using the msleep dataset from ggplot2
and the penguins dataset from palmerpenguins.

231

5.7.11.1 rename() – Renaming Columns

The rename() function allows you to change column names to make them more meaningful
or easier to work with. This is especially helpful when dealing with datasets that have poorly
named columns.

Key Points:

• Syntax: rename(new_name = old_name)
• You can rename one or multiple columns at a time.
• The rest of the dataset remains unchanged.

Example 1: Renaming Columns in msleep

Rename the column name to animal_name and sleep_total to total_sleep:

msleep |>
rename(

animal_name = name,
total_sleep = sleep_total

)

#> # A tibble: 83 x 11
#> animal_name genus vore order conservation total_sleep sleep_rem sleep_cycle
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 Cheetah Acin~ carni Carn~ lc 12.1 NA NA
#> 2 Owl monkey Aotus omni Prim~ <NA> 17 1.8 NA
#> 3 Mountain be~ Aplo~ herbi Rode~ nt 14.4 2.4 NA
#> 4 Greater sho~ Blar~ omni Sori~ lc 14.9 2.3 0.133
#> 5 Cow Bos herbi Arti~ domesticated 4 0.7 0.667
#> 6 Three-toed ~ Brad~ herbi Pilo~ <NA> 14.4 2.2 0.767
#> 7 Northern fu~ Call~ carni Carn~ vu 8.7 1.4 0.383
#> 8 Vesper mouse Calo~ <NA> Rode~ <NA> 7 NA NA
#> 9 Dog Canis carni Carn~ domesticated 10.1 2.9 0.333
#> 10 Roe deer Capr~ herbi Arti~ lc 3 NA NA
#> # i 73 more rows
#> # i 3 more variables: awake <dbl>, brainwt <dbl>, bodywt <dbl>

Note

1. rename(animal_name = name) renames the name column to animal_name.
2. rename(total_sleep = sleep_total) renames sleep_total to total_sleep.
3. You can use this to make column names more descriptive.

232

Example 2:

Rename bill_length_mm to bill_length and flipper_length_mm to flipper_length in the
penguins data:

penguins |>
rename(

bill_length = bill_length_mm,
flipper_length = flipper_length_mm

)

#> # A tibble: 344 x 8
#> species island bill_length bill_depth_mm flipper_length body_mass_g sex
#> <fct> <fct> <dbl> <dbl> <int> <int> <fct>
#> 1 Adelie Torgersen 39.1 18.7 181 3750 male
#> 2 Adelie Torgersen 39.5 17.4 186 3800 female
#> 3 Adelie Torgersen 40.3 18 195 3250 female
#> 4 Adelie Torgersen NA NA NA NA <NA>
#> 5 Adelie Torgersen 36.7 19.3 193 3450 female
#> 6 Adelie Torgersen 39.3 20.6 190 3650 male
#> 7 Adelie Torgersen 38.9 17.8 181 3625 female
#> 8 Adelie Torgersen 39.2 19.6 195 4675 male
#> 9 Adelie Torgersen 34.1 18.1 193 3475 <NA>
#> 10 Adelie Torgersen 42 20.2 190 4250 <NA>
#> # i 334 more rows
#> # i 1 more variable: year <int>

Reflection Question

How might renaming confusing column names or removing duplicates before analysis
contribute to more confident and accurate inferences?

5.7.11.2 distinct() – Extracting Unique Rows or Values

Duplicates in datasets can distort analyses and lead to inaccurate conclusions. Identifying
and removing duplicates ensures clean data that accurately represents unique observations.
The distinct() function is a simple yet powerful tool for finding unique rows or specific
combinations of values in a dataset. It is particularly useful for removing duplicate rows or
understanding unique categories in a variable.

Key Points:

233

1. Default Behavior:
By default, distinct() considers all columns to identify unique rows.

2. Specific Variables:
You can specify one or more columns to extract unique values for specific variables.

3. Keeping All Variables:
Adding .keep_all = TRUE while specifying columns ensures that all other variables are
retained in the resulting dataset.

4. Using janitor::get_dupes():
The get_dupes() function from the janitor package provides an easy way to identify
duplicates. It returns:

• Full records where the specified variables have duplicates.

• A column called dupe_count showing the number of rows sharing each duplicate
combination.

Example 1: Counting Duplicates (iris Dataset)

To count the number of duplicate rows in a dataset, use the combination of duplicated()
and sum() functions:

sum(duplicated(iris))

#> [1] 1

There is one duplicate record found in this dataset.

Example 2: Identifying and Removing Duplicates (iris Dataset)

To find duplicate records in the iris dataset

iris |> janitor::get_dupes()

#> No variable names specified - using all columns.

#> # A tibble: 2 x 6
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species dupe_count
#> <dbl> <dbl> <dbl> <dbl> <fct> <int>
#> 1 5.8 2.7 5.1 1.9 virginica 2
#> 2 5.8 2.7 5.1 1.9 virginica 2

234

The output shows the duplicate records in the iris dataset. To remove these duplicates and
retain only the unique rows, you can use the distinct() function as follows:

iris |> distinct()

#> # A tibble: 149 x 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # i 139 more rows

Example 3: Finding Unique Values in a Specific Column (msleep Dataset)

To extract unique values from the vore column in the msleep dataset (diet types):

msleep |>
distinct(vore)

#> # A tibble: 5 x 1
#> vore
#> <chr>
#> 1 carni
#> 2 omni
#> 3 herbi
#> 4 <NA>
#> 5 insecti

Note

The distinct(vore) function returns only the unique values in the vore column, helping
you understand the categories in this variable.

235

Example 4: Keeping All Variables When Filtering for Uniqueness

To return unique rows based on the vore column while keeping all other variables:

msleep |>
distinct(vore, .keep_all = TRUE)

#> # A tibble: 5 x 11
#> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Cheetah Acin~ carni Carn~ lc 12.1 NA NA 11.9
#> 2 Owl mo~ Aotus omni Prim~ <NA> 17 1.8 NA 7
#> 3 Mounta~ Aplo~ herbi Rode~ nt 14.4 2.4 NA 9.6
#> 4 Vesper~ Calo~ <NA> Rode~ <NA> 7 NA NA 17
#> 5 Big br~ Epte~ inse~ Chir~ lc 19.7 3.9 0.117 4.3
#> # i 2 more variables: brainwt <dbl>, bodywt <dbl>

Note

Adding .keep_all = TRUE ensures that the uniqueness is determined by the vore col-
umn, but all other columns are retained in the output.

5.7.11.3 count() – Counting Occurrences

The count() function is a quick way to calculate the frequency of unique values in a column
or combinations of columns. It is particularly useful for summarizing categorical variables.

Adding the sort = TRUE argument will automatically sort the results in descending order of
frequency.

Key Points:

• By default, count() returns the number of occurrences for each unique value.
• Use count(x, sort = TRUE) to sort the results, with the largest groups appearing at

the top.

Example 1

Count the number of animals in each diet category (vore) in the msleep data:

msleep |>
count(vore, sort = TRUE)

236

#> # A tibble: 5 x 2
#> vore n
#> <chr> <int>
#> 1 herbi 32
#> 2 omni 20
#> 3 carni 19
#> 4 <NA> 7
#> 5 insecti 5

Explanation:

1. count(vore) calculates how many times each diet type (vore) appears.

2. The output has two columns: vore and n (the count).

Example 2

Count the number of penguins on each island in the penguins data:

penguins |>
count(island)

#> # A tibble: 3 x 2
#> island n
#> <fct> <int>
#> 1 Biscoe 168
#> 2 Dream 124
#> 3 Torgersen 52

5.7.11.4 relocate() – Reordering Columns

The relocate() function allows you to rearrange columns for better readability or logical
grouping using the same syntax as select() to make it easy to move blocks of columns at
once. It doesn’t remove or modify columns, only changes their position.

Key Points:

• Use relocate(column_name, .before = ...) to move a column before a specific col-
umn.

• Use relocate(column_name, .after = ...) to move a column after a specific column.

237

Example 1 : Reordering Columns in msleep

Move bodywt to appear after the sleep_total column:

msleep |>
relocate(bodywt, .after = sleep_total)

#> # A tibble: 83 x 11
#> name genus vore order conservation sleep_total bodywt sleep_rem
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 Cheetah Acin~ carni Carn~ lc 12.1 50 NA
#> 2 Owl monkey Aotus omni Prim~ <NA> 17 0.48 1.8
#> 3 Mountain beaver Aplo~ herbi Rode~ nt 14.4 1.35 2.4
#> 4 Greater short-t~ Blar~ omni Sori~ lc 14.9 0.019 2.3
#> 5 Cow Bos herbi Arti~ domesticated 4 600 0.7
#> 6 Three-toed sloth Brad~ herbi Pilo~ <NA> 14.4 3.85 2.2
#> 7 Northern fur se~ Call~ carni Carn~ vu 8.7 20.5 1.4
#> 8 Vesper mouse Calo~ <NA> Rode~ <NA> 7 0.045 NA
#> 9 Dog Canis carni Carn~ domesticated 10.1 14 2.9
#> 10 Roe deer Capr~ herbi Arti~ lc 3 14.8 NA
#> # i 73 more rows
#> # i 3 more variables: sleep_cycle <dbl>, awake <dbl>, brainwt <dbl>

Example 2:

You can also relocate variables based on their data type:

penguins |> relocate(where(is.factor), .before = bill_length_mm)

#> # A tibble: 344 x 8
#> species island sex bill_length_mm bill_depth_mm flipper_length_mm
#> <fct> <fct> <fct> <dbl> <dbl> <int>
#> 1 Adelie Torgersen male 39.1 18.7 181
#> 2 Adelie Torgersen female 39.5 17.4 186
#> 3 Adelie Torgersen female 40.3 18 195
#> 4 Adelie Torgersen <NA> NA NA NA
#> 5 Adelie Torgersen female 36.7 19.3 193
#> 6 Adelie Torgersen male 39.3 20.6 190
#> 7 Adelie Torgersen female 38.9 17.8 181
#> 8 Adelie Torgersen male 39.2 19.6 195
#> 9 Adelie Torgersen <NA> 34.1 18.1 193
#> 10 Adelie Torgersen <NA> 42 20.2 190

238

#> # i 334 more rows
#> # i 2 more variables: body_mass_g <int>, year <int>

Combining These Functions

Let’s combine rename(), distinct(), count(), and relocate() to solve a real-world prob-
lem.

Example: Cleaning and Organizing msleep Data

1. Rename columns for clarity.

2. Remove duplicate rows.

3. Reorganize columns for better readability.

4. Count occurrences of diet types.

msleep |>
rename(

animal_name = name,
diet_type = vore

) |>
distinct() |>
relocate(diet_type, .before = animal_name) |>
count(diet_type, sort = TRUE)

#> # A tibble: 5 x 2
#> diet_type n
#> <chr> <int>
#> 1 herbi 32
#> 2 omni 20
#> 3 carni 19
#> 4 <NA> 7
#> 5 insecti 5

5.7.12 Practice Quiz 5.2

Question 1:

Which function would you use in dplyr to randomly select a specified number of rows from a
dataset?

a) sample(n = 5)

239

b) slice_sample(n = 5)

c) filter_sample()

d) mutate_sample()

Question 2:

To calculate the average sleep_total for each vore category, which combination of functions
is most appropriate?

a) group_by(vore) |> select(sleep_total) |> summarise(mean(sleep_total))

b) select(vore, sleep_total) |> summarise(mean(sleep_total)) |> group_by(vore)

c) group_by(vore) |> summarise(avg_sleep = mean(sleep_total, na.rm = TRUE))

d) filter(vore) |> mutate(avg_sleep = mean(sleep_total))

Question 3:

To extract rows with the maximum value of a specified variable, which function is appropriate
in dplyr?

a) slice_max()

b) slice_min()

c) mutate()

d) select()

Question 4:

Which dplyr function would you use if you want to create a new column called weight_ratio
by dividing bodywt by mean_bodywt?

a) filter()

b) select()

c) mutate()

d) arrange()

240

Question 5:

Suppose you need to identify the top 3 penguins with the highest bill aspect ratio from the
penguins dataset after calculating it in a new column. Which of the following code snippets
is the most concise and appropriate?

a)

penguins |>
mutate(bill_aspect_ratio = bill_length_mm / bill_depth_mm) |>
arrange(desc(bill_aspect_ratio)) |>
head(3)

b)

penguins |>
mutate(bill_aspect_ratio = bill_length_mm / bill_depth_mm) |>
slice_max(bill_aspect_ratio, n = 3)

c) Both a and b are equally concise and valid.

d) Neither a nor b is valid.

Question 6:

Given the following code, which is the correct equivalent using the pipe operator?

result <- arrange(filter(select(msleep, name, sleep_total), sleep_total > 8), sleep_total)

a) msleep |> select(name, sleep_total) |> filter(sleep_total > 8) |> arrange(sleep_total)

b) msleep |> filter(sleep_total > 8) |> select(name, sleep_total) |> arrange(sleep_total)

c) select(msleep, name, sleep_total) |> filter(sleep_total > 8) |> arrange(sleep_total)

d) msleep |> arrange(sleep_total) |> filter(sleep_total > 8) |> select(name,
sleep_total)

Question 7:

Which of the following correctly applies a log transformation to numeric columns only?

a)

mutate_all(log)

241

b)

mutate(across(everything(), log))

c)

mutate(select(where(is.numeric), log))

d)

mutate(across(where(is.numeric), log))

Question 8:

What does mutate(across(everything(), as.character)) do?

a) Converts all character columns to numeric.

b) Converts all columns in the dataset to character type.

c) Applies a conditional transformation to numeric columns.

d) Filters out non-character values.

Question 9:

To extract the rows with the minimum value of a specified variable, which dplyr function
should you use?

a) slice_min()

b) slice_max()

c) arrange()

d) filter()

Question 10:

If you want to reorder the rows of msleep by sleep_total in ascending order and then only
show the top 5 rows, which code snippet is correct?

a) msleep |> arrange(sleep_total) |> head(5)

b) msleep |> head(5) |> arrange(sleep_total)

242

c) msleep |> summarise(sleep_total) |> head(5)

d) msleep |> select(sleep_total) |> arrange(desc(sleep_total)) |> head(5)

See the Solution to Quiz 5.2

5.7.13 Exercise 5.2.2: Analysing the Penguins Dataset

Let’s put your skills into practice with a modified penguins dataset. First, you’ll need to
create a new RStudio project called Experiment 5.1.

1. Importing and Inspecting Data

• Locate the penguins.xlsx file in the r-data directory. If you don’t already have
the file, you can download it from Google Drive.

• Import the data into R.

• Use glimpse(penguins) to get an overview.

• How many rows and columns are there?

2. Filtering Data

• How many penguins are from the Biscoe island?

• Extract data for penguins with a body mass greater than 4,500 grams.

3. Arranging Data

• Arrange the data in descending order based on flipper length.

• Find the top 5 penguins with the highest body mass.

4. Selecting and Mutating

• Select only the columns species, island, and sex.

• Remove the sex column from the dataset.

• Convert the flipper length from millimeters to meters and create a new column
flipper_length_m

To convert millimeters to meters, you simply divide the number of millimeters by
1,000. Here’s the conversion formula:

flipper_length_m = flipper_length_mm
1000

243

https://docs.google.com/spreadsheets/d/1v_uMmVYfP06r0gzyU5vb3lWWtu4IrINe/edit?usp=drive_link&ouid=106220036497399452279&rtpof=true&sd=true

• Create a new column BMI calculated as:

BMI = body_mass_g
flipper_length_m2

5. Summarizing and Grouping

• Calculate the average body mass of all penguins.

• Group the data by species and find the average body mass for each species.

6. Combining Operations

• Filter penguins from the Dream island and summarize the average bill length for
each species from this island.

5.7.14 Exercise 5.2.3: Data Analyst Candidate Assessment

In this exercise, you’ll work with a real dataset of medical insurance records similar to those
of a well-known health insurance company in the country. We want to see how you clean,
transform and analyse data in a practical, real-world context as a Data Analyst. Please follow
the instructions below and document your process along the way.

Dataset Overview

You’re provided with a dataset containing medical insurance records for various individuals.
Here’s what each column represents:

• User ID: A unique identifier for each individual.

• Gender: The individual’s gender (‘Male’ or ‘Female’).

• Age: The age of the individual in years.

• AgeGroup: The age bracket into which the individual falls.

• Estimated Salary: An estimate of the individual’s annual salary.

• Purchased: Indicates whether the individual has purchased medical insurance (‘pur-
chased’ or ‘not-purchased’).

244

Data Import Instructions

1. Locate the medical_insurance.xlsx file in the r-data directory. If you don’t have it
yet, you can download it from Google Drive.

2. Import the dataset into R using the readxl package.

Tasks

1. Data Transformation

• Purchased Column Conversion:
Convert the Purchased column values to binary: use 1 for ‘purchased’ and 0 for ‘not-
purchased’.

• Creating Salary Brackets:
Add a new column called SalaryBracket based on the Estimated Salary:

– Low: Salary < 30,000

– Medium: Salary between 30,000 and 70,000

– High: Salary > 70,000

2. Analysis and Insights

• Insurance Purchase Analysis:
Calculate and present:

– The percentage of individuals who have purchased insurance, broken down by Gen-
der.

– The percentage of individuals who have purchased insurance, broken down by Age-
Group.

• Salary Bracket Purchase Rate:
Determine which SalaryBracket shows the highest rate of insurance purchases.

Note

Take your time to work through these tasks carefully. We’re looking forward to seeing
how you apply your analytical skills to solve real-world data challenges. Good luck!

245

https://docs.google.com/spreadsheets/d/1RPyZx6viNm-kDd4NKaINTG1wmO_02Bfr/edit?usp=drive_link&ouid=106220036497399452279&rtpof=true&sd=true

5.8 Experiment 5.3: Dealing with Missing Data

Missing data is common in real-world scenarios. Values may be missing because of measure-
ment errors, data entry mistakes, or unavailability of certain information. It is crucial to detect
and handle missing values properly, as they can bias results or cause errors in your analysis.
R provides several functions to help you deal with missing data.

5.8.1 Recognising Missing Values

In R, missing values are represented by NA. Identifying these missing values is crucial for
accurate data analysis. Here are some functions to check for missing data:

• is.na(): Returns a logical vector indicating which elements are NA.
x <- c(1, 2, NA, 4, NA, 6)

is.na(x)

#> [1] FALSE FALSE TRUE FALSE TRUE FALSE

• anyNA(): Checks if there are any NA values in an object. It returns TRUE if there is at
least one NA, and FALSE otherwise.
anyNA(x)

#> [1] TRUE

Let’s apply the anyNA() function to a sample salary_data data frame:

salary_data <- data.frame(
Name = c("Alice", "Francisca", "Fatima", "David"),
Age = c(25, NA, 30, 35),
Salary = c(50000, 52000, NA, 55000)

)

salary_data

#> Name Age Salary
#> 1 Alice 25 50000
#> 2 Francisca NA 52000
#> 3 Fatima 30 NA
#> 4 David 35 55000

246

In this data frame, Francisca’s age and Fatima’s salary are missing. We can use anyNA() to
check whether there are any missing values in the entire data frame:

anyNA(salary_data)

#> [1] TRUE

Since the output is TRUE, we know there are missing values. We can also check specific columns
for missing values. For example, let’s check the Age column:

anyNA(salary_data$Age)

#> [1] TRUE

And similarly, we can check the Name column:

anyNA(salary_data$Name)

#> [1] FALSE

• complete.cases(): Identifies rows in a dataset that have no missing values (NA). It
evaluates each row and checks whether it is “complete” (i.e., contains no NA values). It
returns a logical vector where:

– TRUE indicates that a row has no missing values (all columns are complete).

– FALSE indicates that a row contains at least one missing value.

For example, using our sample salary_data data frame:

salary_data

#> Name Age Salary
#> 1 Alice 25 50000
#> 2 Francisca NA 52000
#> 3 Fatima 30 NA
#> 4 David 35 55000

247

complete.cases(salary_data)

#> [1] TRUE FALSE FALSE TRUE

Note

This indicates that:

• Row 1 (Alice): No missing values, so it is complete (TRUE).

• Row 2 (Francisca): Missing value in the Age column, so it is not complete
(FALSE).

• Row 3 (Fatima): Missing value in the Salary column, so it is not complete
(FALSE).

• Row 4 (David): No missing values, so it is complete (TRUE).

5.8.2 Summarising Missing Data

After identifying that your dataset contains missing values, it’s essential to quantify them to
understand the extent of the issue. Summarizing missing data helps you decide how to handle
these gaps appropriately. To count the total number of missing values in your entire dataset,
you can use the sum() function combined with is.na(). Remember the is.na() function
returns a logical vector where each element is TRUE if the corresponding value in the dataset
is NA, and FALSE otherwise. Summing this logical vector gives you the total count of missing
values because TRUE is treated as 1 and FALSE as 0 in arithmetic operations.

Example:

Suppose you have a sampled airquality dataset:

airquality_data <- data.frame(
Ozone = c(41, 36, 12, 18, NA, 28, 23, 19, 8, NA),
Solar.R = c(190, 118, 149, 313, NA, NA, 299, 99, 19, 194),
Wind = c(7.4, 8, 12.6, 11.5, 14.3, 14.9, 8.6, 13.8, 20.1, 8.6),
Temp = c(67, 72, 74, 62, 56, 66, 65, 59, 61, 69),
Month = c(5, 5, 5, NA, NA, NA, 5, 5, 5, 5),
Day = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

)

airquality_data

248

#> Ozone Solar.R Wind Temp Month Day
#> 1 41 190 7.4 67 5 1
#> 2 36 118 8.0 72 5 2
#> 3 12 149 12.6 74 5 3
#> 4 18 313 11.5 62 NA 4
#> 5 NA NA 14.3 56 NA 5
#> 6 28 NA 14.9 66 NA 6
#> 7 23 299 8.6 65 5 7
#> 8 19 99 13.8 59 5 8
#> 9 8 19 20.1 61 5 9
#> 10 NA 194 8.6 69 5 10

To count the total number of missing values in this dataset, you would use:

sum(is.na(airquality_data))

#> [1] 7

There are 7 missing values in the entire data frame.

Missing Values Per Column:

colSums(is.na(airquality_data))

#> Ozone Solar.R Wind Temp Month Day
#> 2 2 0 0 3 0

This output indicates:

• Ozone column has 2 missing values.

• Solar.R column has 2 missing values.

• Wind column has 0 missing values.

• Temp column has 0 missing values.

• Month column has 3 missing values.

• Daycolumn has 0 missing values.

For a column-wise summary, you can also use the inspect_na() function from the inspectdf
package.

249

inspectdf::inspect_na(airquality_data)

#> # A tibble: 6 x 3
#> col_name cnt pcnt
#> <chr> <int> <dbl>
#> 1 Month 3 30
#> 2 Ozone 2 20
#> 3 Solar.R 2 20
#> 4 Wind 0 0
#> 5 Temp 0 0
#> 6 Day 0 0

5.8.3 Strategies for Dealing with Missing Data

Managing missing data is a critical step in data preprocessing. There are several strategies
available, depending on the nature of the data and the goals of the analysis.

5.8.3.1 Remove Missing Values

You can remove rows with missing values using na.omit() function:

cleaned_data <- na.omit(airquality_data)
cleaned_data

#> Ozone Solar.R Wind Temp Month Day
#> 1 41 190 7.4 67 5 1
#> 2 36 118 8.0 72 5 2
#> 3 12 149 12.6 74 5 3
#> 7 23 299 8.6 65 5 7
#> 8 19 99 13.8 59 5 8
#> 9 8 19 20.1 61 5 9

Warning

This method is simple and effective when the proportion of missing data is small. However,
it can result in a significant loss of data if many rows contain missing values.

250

5.8.3.2 Replace Missing Values

Replace missing values with a default value using replace_na() from the tidyr package:

library(tidyverse) # tidyr is part of tidyverse
dataset <- airquality_data %>%
replace_na(list(Ozone = 17, Month = 3))

dataset

#> Ozone Solar.R Wind Temp Month Day
#> 1 41 190 7.4 67 5 1
#> 2 36 118 8.0 72 5 2
#> 3 12 149 12.6 74 5 3
#> 4 18 313 11.5 62 3 4
#> 5 17 NA 14.3 56 3 5
#> 6 28 NA 14.9 66 3 6
#> 7 23 299 8.6 65 5 7
#> 8 19 99 13.8 59 5 8
#> 9 8 19 20.1 61 5 9
#> 10 17 194 8.6 69 5 10

Note

This approach ensures that missing values are replaced consistently, allowing for mean-
ingful analysis without introducing bias.

5.8.3.3 Impute Missing Values

Missing values can be replaced with statistical measures such as the mean, median, or mode.
For example, missing values in the Ozone column can be replaced with the mean, while missing
values in the Month column can be replaced with the median:

library(dplyr)

airquality_data <- airquality_data %>%
mutate(

Ozone = ifelse(is.na(Ozone), mean(Ozone, na.rm = TRUE), Ozone),
Month = ifelse(is.na(Month), median(Month, na.rm = TRUE), Month)

)

251

View the resulting dataset
airquality_data

#> Ozone Solar.R Wind Temp Month Day
#> 1 41.000 190 7.4 67 5 1
#> 2 36.000 118 8.0 72 5 2
#> 3 12.000 149 12.6 74 5 3
#> 4 18.000 313 11.5 62 5 4
#> 5 23.125 NA 14.3 56 5 5
#> 6 28.000 NA 14.9 66 5 6
#> 7 23.000 299 8.6 65 5 7
#> 8 19.000 99 13.8 59 5 8
#> 9 8.000 19 20.1 61 5 9
#> 10 23.125 194 8.6 69 5 10

Tip

If you don’t want to use ifelse, you can achieve the same result using the coalesce()
function from dplyr. coalesce() replaces NA values by providing a fallback value.

library(dplyr)

airquality_data <- airquality_data %>%
mutate(
Ozone = coalesce(Ozone, mean(Ozone, na.rm = TRUE)),
Month = coalesce(Month, median(Month, na.rm = TRUE))

)

View the resulting dataset
airquality_data

#> Ozone Solar.R Wind Temp Month Day
#> 1 41.000 190 7.4 67 5 1
#> 2 36.000 118 8.0 72 5 2
#> 3 12.000 149 12.6 74 5 3
#> 4 18.000 313 11.5 62 5 4
#> 5 23.125 NA 14.3 56 5 5
#> 6 28.000 NA 14.9 66 5 6
#> 7 23.000 299 8.6 65 5 7
#> 8 19.000 99 13.8 59 5 8
#> 9 8.000 19 20.1 61 5 9
#> 10 23.125 194 8.6 69 5 10

252

• coalesce() is a simpler and more concise alternative when dealing with missing
values.

• coalesce(Ozone, mean(Ozone, na.rm = TRUE)) replaces NA values in Ozone with
the computed mean.

• coalesce(Month, median(Month, na.rm = TRUE)) does the same for Month us-
ing the median.

For more advanced imputation methods, you can use specialised packages like mice or Hmisc.
Additionally, the bulkreadr package simplifies the process with the fill_missing_values()
function:

• Impute Specific Columns:
library(bulkreadr)

fill_missing_values(airquality_data,
selected_variables = c("Ozone", "Solar.R"),
method = "mean"

)

#> Ozone Solar.R Wind Temp Month Day
#> 1 41.000 190.000 7.4 67 5 1
#> 2 36.000 118.000 8.0 72 5 2
#> 3 12.000 149.000 12.6 74 5 3
#> 4 18.000 313.000 11.5 62 5 4
#> 5 23.125 172.625 14.3 56 5 5
#> 6 28.000 172.625 14.9 66 5 6
#> 7 23.000 299.000 8.6 65 5 7
#> 8 19.000 99.000 13.8 59 5 8
#> 9 8.000 19.000 20.1 61 5 9
#> 10 23.125 194.000 8.6 69 5 10

• Impute All Columns in the Data Frame:
fill_missing_values(airquality_data, method = "median")

#> Ozone Solar.R Wind Temp Month Day
#> 1 41.000 190.0 7.4 67 5 1
#> 2 36.000 118.0 8.0 72 5 2
#> 3 12.000 149.0 12.6 74 5 3
#> 4 18.000 313.0 11.5 62 5 4
#> 5 23.125 169.5 14.3 56 5 5
#> 6 28.000 169.5 14.9 66 5 6

253

https://gbganalyst.github.io/bulkreadr/

#> 7 23.000 299.0 8.6 65 5 7
#> 8 19.000 99.0 13.8 59 5 8
#> 9 8.000 19.0 20.1 61 5 9
#> 10 23.125 194.0 8.6 69 5 10

Warning

This approach helps to preserve the structure of the dataset and minimises data loss.
However, it can introduce bias if the chosen statistic (e.g., mean or median) does not
accurately represent the underlying data.

5.8.3.4 Flag Missing Data

You can create a new column to flag rows with missing values:

airquality_data %>% mutate(missing_flag = !complete.cases(.))

#> Ozone Solar.R Wind Temp Month Day missing_flag
#> 1 41.000 190 7.4 67 5 1 FALSE
#> 2 36.000 118 8.0 72 5 2 FALSE
#> 3 12.000 149 12.6 74 5 3 FALSE
#> 4 18.000 313 11.5 62 5 4 FALSE
#> 5 23.125 NA 14.3 56 5 5 TRUE
#> 6 28.000 NA 14.9 66 5 6 TRUE
#> 7 23.000 299 8.6 65 5 7 FALSE
#> 8 19.000 99 13.8 59 5 8 FALSE
#> 9 8.000 19 20.1 61 5 9 FALSE
#> 10 23.125 194 8.6 69 5 10 FALSE

Tip

Using !complete.cases(.) ensures the missing_flag column accurately identifies rows
with missing values (TRUE) while marking rows without missing values as FALSE. This
binary flag is useful for quickly filtering or inspecting incomplete data.

Alternatively, instead of a binary flag, you can add a column that shows the number of missing
values in each row:

airquality_data$missing_count <- rowSums(is.na(airquality_data))

airquality_data

254

#> Ozone Solar.R Wind Temp Month Day missing_count
#> 1 41.000 190 7.4 67 5 1 0
#> 2 36.000 118 8.0 72 5 2 0
#> 3 12.000 149 12.6 74 5 3 0
#> 4 18.000 313 11.5 62 5 4 0
#> 5 23.125 NA 14.3 56 5 5 1
#> 6 28.000 NA 14.9 66 5 6 1
#> 7 23.000 299 8.6 65 5 7 0
#> 8 19.000 99 13.8 59 5 8 0
#> 9 8.000 19 20.1 61 5 9 0
#> 10 23.125 194 8.6 69 5 10 0

Tip

Adding a column like missing_count provides a numeric indicator of the total number of
missing values in each row. This approach is particularly helpful when you need to assess
the extent of missingness across the dataset or prioritise rows for further investigation

Reflection Question

Consider the potential biases introduced by removing all rows with missing values. In
which scenarios would you prefer imputation over removal?

5.8.4 Practice Quiz 5.3

Question 1:

Which function in R checks if there are any missing values in an object?

a) is.na()

b) anyNA()

c) complete.cases()

d) na.omit()

Question 2:

Which approach removes any rows containing NA values?

a) na.omit()

255

b) replace_na()

c) complete.cases()

d) anyNA()

Question 3:

If you decide to impute missing values in a column using the median, what is one potential
advantage of using the median rather than the mean?

a) The median is always easier to compute.

b) The median is more affected by outliers than the mean.

c) The median is less influenced by extreme values and may provide a more robust estimate.

d) The median will always be exactly halfway between the min and max values.

Question 4:

How would you replace all NA values in character columns with "Unknown"?

a)

mutate(across(where(is.character), ~ replace_na(., "Unknown")))

b)

mutate_all(~ replace_na(., "Unknown"))

c)

mutate(across(where(is.character), na.omit))

d)

mutate(across(where(is.character), replace(. == NA, "Unknown")))

Question 5:

What does the anyNA() function return?

a) The number of missing values in an object.

256

b) TRUE if there are any missing values in the object; otherwise, FALSE.

c) A logical vector of missing values in each row.

d) A subset of the data frame without missing values.

Question 6:

You want to create a new column in a data frame that flags rows with missing values as TRUE.
Which code achieves this?

a) df$new_col <- !complete.cases(df)
b) df$new_col <- complete.cases(df)

c) df$new_col <- anyNA(df)

d) df$new_col <- is.na(df)

Question 7:

Before removing rows with missing values, what is an important consideration?

a) Whether the missing values are randomly distributed across the data.

b) Whether the dataset is stored in a data frame.

c) Whether missing values exist in every column.

d) Whether the missing values are encoded as NA.

Question 8:

Why should the proportion of missing data in a row or column be considered before removing
it?

a) Removing rows or columns with minimal missing values may lead to excessive data loss.

b) Columns with missing values cannot be visualized.

c) Rows with missing values are always irrelevant.

d) Rows with missing values should never be analyzed.

Question 9:

If a dataset has 50% missing values in a column, what is a common approach to handle this
situation?

257

a) Replace missing values with the column mean.

b) Remove the column entirely.

c) Replace missing values with zeros.

d) Leave the missing values as they are.

Question 10:

What does the following Tidyverse-style code do?

library(dplyr)

airquality_data <- airquality_data %>%
mutate(Ozone = if_else(is.na(Ozone), mean(Ozone, na.rm = TRUE), Ozone))

a) Removes rows where Ozone is missing.

b) Replaces missing values in Ozone with the mean of the column.

c) Flags rows where Ozone is missing.

d) Deletes the Ozone column if it has missing values.

See the Solution to Quiz 5.3

5.8.5 Exercise 5.3.1: Handling Missing Data in the Television Company Dataset

This exercise will test your data cleaning skills using the data-tv-company.csv dataset, lo-
cated in the r-data directory. If you do not already have the file, you can download it from
Google Drive.

Dataset Metadata

This dataset was collected by a small television company seeking to understand the factors
that influence how viewers rate the company. It includes viewer ratings and related measures.
The variables in the dataset are as follows:

• regard: Viewer rating of the television company (higher ratings indicate greater regard).

• gender: The gender with which the viewer identifies.

• views: The number of views.

258

https://drive.google.com/file/d/19tjRk3s9s9j0M-rQa_B5XmLmKtsYWPct/view?usp=drive_link

• online: The number of times bonus online material was accessed.

• library: The number of times the online library was browsed.

• Show1 to Show4: Scores for four different shows.

Tasks

1. Importing and Inspecting Data

• Locate the data-tv-company.csv file in the r-data directory.
• Import the data into your R environment.
• Inspect the dataset for any missing values.

2. Strategies for Dealing with Missing Data

• Demonstrate at least four different methods for handling missing data in this
dataset.

• Apply these methods to the imported data.
• Evaluate the methods and select the best approach based on your analysis.

See the Solution to Exercise 5.3.1

5.9 Reflective Summary

In Lab 5, you developed essential skills in data transformation with R, including::

• The Pipe Operator |>: You learned to link functions in a logical sequence, enhancing
code readability.

• Data Manipulation with dplyr: You used core verbs—select(), filter(),
mutate(), arrange(), and summarise()—to reshape and refine your data.

• Summarisation and Grouping: By using group_by() and summarise(), you aggre-
gated data to uncover patterns and derive insights.

• Handling Missing Data: You learned to detect and manage missing values, ensuring
the quality of your analysis.

These techniques form a crucial step in the data analysis pipeline, enabling you to approach
complex datasets with confidence and produce meaningful insights.

259

What’s Next?

In the next lab, we will explore tidy data and joins. You will learn to reshape datasets and
merge diverse data sources, converting raw data into structured, analysis-ready formats.
This will pave the way for deeper insights and more efficient workflows.

260

6 Tidy Data and Joins

6.1 Introduction

Welcome to Lab 6! In Lab 5, you explored advanced data transformation techniques—including
the pipe operator, key dplyr functions, and methods for handling missing data. Now, we will
move on to organising and transforming your data using tidy data principles.

Tidy data involves arranging your dataset so that each variable occupies its own column, each
observation its own row, and each type of observational unit its own table. Although tidying
data may require some upfront effort, this structure greatly simplifies subsequent analysis and
improves efficiency. With the tidyverse tools at your disposal, you will spend less time cleaning
data and more time uncovering insights.

If you have ever struggled with reshaping datasets, merging data from multiple sources, or
applying complex transformations, this lab is for you. The skills you acquire here are essential
for real-world data analysis and will significantly enhance your proficiency in R.

6.2 Learning Objectives

By the end of this lab, you will be able to:

• Understand Tidying Data:
Comprehend what tidy data is and why it is crucial for effective analysis.

• Reshape Data:
Convert datasets between wide and long formats using functions like pivot_longer()
and pivot_wider() to prepare your data for analysis and visualisation.

• Separate and Unite Columns:
Use separate() to split columns and unite() to combine them, thereby improving the
structure and usability of your dataset.

• Combine Datasets Effectively:
Master various join operations in dplyr to merge datasets seamlessly, resolving issues
such as mismatched keys and duplicates.

261

By completing this lab, you will be equipped to transform messy, real-world datasets into
analysis-ready formats, paving the way for insightful visualisations, robust models, and confi-
dent data analysis.

6.3 Prerequisites

Before you begin this lab, you should have:

• Completed Lab 5 or have a basic understanding of data manipulation.

• A working knowledge of R’s data structures.

• Familiarity with the tidyverse packages, particularly dplyr.

6.4 The Principles of Tidy Data

Tidy data is all about maintaining a clear and consistent structure. It is organised in such a
way that:

• Each variable forms a column.

• Each observation forms a row.

• Each cell contains a single value.

Figure 6.1: Understanding Tidy Data: Variables, Observations, and Values

As illustrated in Figure 6.1, this structure makes it much easier to analyse and visualise data.
Tools like tidyr and dplyr work best with data that adheres to these principles, minimising
errors and streamlining the analysis process. In essence, tidy data provides the foundation for
efficient data manipulation and reproducible research.

262

6.5 Experiment 6.1: Reshaping Data with tidyr

Since most real-world datasets are not tidy, they are often collected in a wide format, which can
complicate detailed analysis. For instance, consider a sales manager who records monthly sales
figures for each region in separate columns. Table 6.1 illustrates this wide-format layout:

Table 6.1: Regional Sales Data in Wide Format

Month North East South West
Jan 200 180 150 177
Feb 220 190 140 183
Mar 210 200 160 190

For many analyses—such as trend identification and visualisation—it is advantageous to re-
shape this data into a long format where each row represents a unique combination of region
and month. Table 6.2 shows the transformed data:

Table 6.2: Regional Sales Data in Long Format

Region Month Sales
North Jan 200
North Feb 220
North Mar 210
East Jan 180
East Feb 190
East Mar 200
South Jan 150
South Feb 140
South Mar 160
West Jan 177
West Feb 183
West Mar 190

This long format is particularly useful for time series analysis and visualisation, as it consoli-
dates all pertinent information into common columns. The tidyr package, a core component
of the tidyverse, provides efficient functions to perform these transformations.

263

6.5.1 Reshaping Data from Wide to Long Using pivot_longer()

The pivot_longer() function gathers multiple columns into two key-value columns. This
process is essential when columns represent variables that you wish to convert into rows. Fig-
ure 6.2 illustrates this transformation:

Figure 6.2: Transforming Data from Wide to Long Format Using pivot_longer()

The general syntax of pivot_longer() is:

pivot_longer(
cols = <columns to reshape>,
names_to = <column for variable names>,
values_to = <column for values>

)

Where:

• cols: A tidy-select expression specifying the columns to pivot into longer format.

• names_to: A character vector indicating the name of the new column (or columns) that
will store the original column names in cols.

• values_to: A string specifying the name of the new column that will store the corre-
sponding values.

Example: Converting a Wide Dataset to Long Format

In the following example, we will convert the data in Table 6.1 into a long format using
pivot_longer():

library(tidyverse)

Create the data frame
sales_data_wide <- data.frame(

264

Month = c("Jan", "Feb", "Mar"),
North = c(200, 220, 210),
East = c(180, 190, 200),
South = c(150, 140, 160),
West = c(177, 183, 190)

)

sales_data_wide

#> # A tibble: 3 x 5
#> Month North East South West
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Jan 200 180 150 177
#> 2 Feb 220 190 140 183
#> 3 Mar 210 200 160 190

sales_data_long <- sales_data_wide |>
pivot_longer(

cols = c(North, East, South, West),
names_to = "Region",
values_to = "Sales"

)

sales_data_long

#> # A tibble: 12 x 3
#> Month Region Sales
#> <chr> <chr> <dbl>
#> 1 Jan North 200
#> 2 Jan East 180
#> 3 Jan South 150
#> 4 Jan West 177
#> 5 Feb North 220
#> 6 Feb East 190
#> 7 Feb South 140
#> 8 Feb West 183
#> 9 Mar North 210
#> 10 Mar East 200
#> 11 Mar South 160
#> 12 Mar West 190

265

The dataset is now prepared for further analysis, such as plotting sales figures by region or
calculating averages.

6.5.2 Reshaping Data from Long to Wide Using pivot_wider()

Conversely, the pivot_wider() function reverses the process by spreading key-value pairs into
separate columns. This approach is particularly useful when you need to summarise data or
create compact tables. Figure 6.3 demonstrates this transformation:

Figure 6.3: Transforming Data from Long to Wide Format Using pivot_wider()

The general syntax of pivot_wider() is:

pivot_wider(
names_from = <column for new column names>,
values_from = <column for values>

)

Where:

• names_from: A tidy-select expression specifying the column(s) from which to derive the
new column names.

• values_from: A tidy-select expression specifying the column(s) from which to retrieve
the corresponding values.

Example: Converting a Long Dataset to Wide Format

Using the long-format sales data (sales_data_long), created earlier, we can convert it back
to a wide format:

sales_data_long

266

#> # A tibble: 12 x 3
#> Month Region Sales
#> <chr> <chr> <dbl>
#> 1 Jan North 200
#> 2 Jan East 180
#> 3 Jan South 150
#> 4 Jan West 177
#> 5 Feb North 220
#> 6 Feb East 190
#> 7 Feb South 140
#> 8 Feb West 183
#> 9 Mar North 210
#> 10 Mar East 200
#> 11 Mar South 160
#> 12 Mar West 190

sales_data_wide <- sales_data_long |>
pivot_wider(

names_from = "Region",
values_from = "Sales"

)

sales_data_wide

#> # A tibble: 3 x 5
#> Month North East South West
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Jan 200 180 150 177
#> 2 Feb 220 190 140 183
#> 3 Mar 210 200 160 190

This transformation demonstrates how effortlessly data can be reshaped to meet the require-
ments of various analytical approaches.

6.5.3 Practice Quiz 6.1

Question 1:

Consider the following data frame:

267

sales_data_wide <- data.frame(
Month = c("Oct", "Nov", "Dec"),
North = c(180, 190, 200),
East = c(177, 183, 190),
South = c(150, 140, 160),
West = c(200, 220, 210)

)

Which function would you use to convert this wide-format dataset into a long-format
dataset?

a) pivot_long()

b) pivot_wider()

c) separate()

d) pivot_longer()

Question 2:

In the pivot_longer() function, if you want the original column names (“North”, “East”,
“South”, “West”) to appear in a new column called “Region”, which argument would you
use?

a) cols

b) names_to

c) values_to

d) names_prefix

Question 3:

Given the same data frame, which argument in pivot_longer() specifies the name of the new
column that stores the sales figures?

a) names_to

b) values_to

c) cols

268

d) values_drop_na

Question 4:

What is the primary purpose of using pivot_wider()?

a) To convert long-format data into wide format

b) To combine two data frames

c) To split a column into multiple columns

d) To remove missing values

Question 5:

If you apply pivot_longer() on sales_data_wide without specifying cols, what is likely to
happen?

a) All columns will be pivoted, including the identifier column “Month”, leading to an
undesired result.

b) Only numeric columns will be pivoted.

c) The function will automatically ignore non-numeric columns.

d) An error will be thrown immediately.

Question 6:

Which package provides the functions pivot_longer() and pivot_wider()?

a) dplyr

b) tidyr

c) ggplot2

d) readr

Question 7:

The functions pivot_longer() and pivot_wider() are inverses of each other, allowing you
to switch between wide and long formats easily.

a) True

269

b) False

Question 8:

In the following code snippet, what is the role of the cols = c(North, East, South, West)
argument?

sales_data_long <- sales_data_wide |>
pivot_longer(

cols = c(North, East, South, West),
names_to = "Region",
values_to = "Sales"

)

a) It tells pivot_longer() which columns to keep as they are.

b) It specifies the columns to be pivoted from wide to long format.

c) It defines the new column names for the output.

d) It removes missing values from these columns.

Question 9:

After reshaping the data to long format, which of the following is a potential advantage?

a) Easier to merge with other datasets

b) Simplified time series analysis and visualisation

c) Increased redundancy in the dataset

d) Reduced number of observations

Question 10:

Which of the following best describes tidy data?
a) Each variable forms a column and each observation a row
b) Data is merged from multiple sources
c) Data is automatically plotted
d) Missing values are always removed

See the Solution to Quiz 6.1

270

6.5.4 Exercise 6.1.1: Tidying the Pew Religion and Income Survey Data

This exercise tests your data tidying skills using the religion_income dataset, which can be
found in the r-data directory. If you do not already have the file, you may download it from
Google Drive.

Dataset Metadata

The Pew Research Trust’s 2014 survey compiled this dataset to examine the relationship
between religious affiliation and income in the United States. It shows the proportions of
sampled individuals from each religious tradition who fall into various income bands (e.g.,
<$10k, $10k-$30k, etc.). The dataset includes:

• religion: The name of the religion.

• Income Range Columns: Multiple columns corresponding to various income brackets
(e.g. <$10k, $10k-$30k, etc.). Each column represents the number of respondents falling
within that income category. Some columns may also include descriptors such as “Don’t
know/refused”.

Tasks

1. Importing and Inspecting Data

• Locate the religion_income.csv file in the r-data directory.

• Import the data into your R environment.

• Inspect the structure of the dataset and familiarise yourself with its variables.

2. Data Tidying

• Reshape the dataset so that the various income range columns are gathered into
two new variables: one for the income range (e.g. income_range) and another for
the corresponding number of respondents (e.g. count).

• Rename the resulting columns as necessary to ensure they are clear and descriptive.

• Create a summary table that displays the total number of respondents per income
range across all religions.

• Produce a bar plot to visualise the distribution of respondents across the different
income ranges.

Happy tidying!

See the Solution to Exercise 6.1.1

271

https://drive.google.com/file/d/1QpqtI2OFqOdYcd0DMDRgCcnLejfjc4oT/view?usp=drive_link

6.6 Experiment 6.2: Splitting and Combining Columns

In this section, we will explore two essential functions from the tidyr package-separate() and
unite()—that help restructure your data effectively.

6.6.1 Splitting Columns with separate()

The separate() function splits a single column into multiple columns. It offers several varia-
tions, each tailored to different splitting methods:

• separate_wider_delim(): Splits a column using a specified delimiter.

• separate_wider_position(): Splits a column at fixed widths.

• separate_wider_regex(): Splits a column using regular expressions.

Figure 6.4: Splitting a Single Column into Multiple Columns Using separate()

The general syntax is:

separate(data, col = <column to split>, into = <new columns>, sep = <separator>, remove = <logical flag>)

Where:

• data: The data frame to be transformed.

• col: The column to be split.

• into: A character vector specifying the names of the new columns.

• sep: A string or regular expression indicating where to split the column. If not specified,
it defaults to splitting at non-alphanumeric characters.

• remove: A logical flag (default TRUE) indicating whether to remove the original column
after splitting.

• convert: A logical flag (default FALSE); if TRUE, it automatically converts the new
columns to appropriate data types using type.convert().

272

Example 1:

Below is a data frame showing tuberculosis (TB) rates in Afghanistan, Brazil, and China from
1999 to 2000. The "rate" column contains both cases and population values combined by a
slash (/).

library(tidyverse)

Create the data frame
tb_cases <- tibble(
country = c("Afghanistan", "Afghanistan", "Brazil", "Brazil", "China", "China"),
year = c(1999, 2000, 1999, 2000, 1999, 2000),
rate = c(

"745/19987071", "2666/20595360", "37737/172006362", "80488/174504898",
"212258/1272915272", "213766/1280428583"

)
)

tb_cases

#> # A tibble: 6 x 3
#> country year rate
#> <chr> <dbl> <chr>
#> 1 Afghanistan 1999 745/19987071
#> 2 Afghanistan 2000 2666/20595360
#> 3 Brazil 1999 37737/172006362
#> 4 Brazil 2000 80488/174504898
#> 5 China 1999 212258/1272915272
#> 6 China 2000 213766/1280428583

Since the "rate" column combines both cases and population, we can split it into two separate
columns, "cases" and "population", using separate_wider_delim():

tb_cases |>
separate_wider_delim(cols = rate, names = c("cases", "population"), delim = "/")

#> # A tibble: 6 x 4
#> country year cases population
#> <chr> <dbl> <chr> <chr>
#> 1 Afghanistan 1999 745 19987071
#> 2 Afghanistan 2000 2666 20595360
#> 3 Brazil 1999 37737 172006362

273

#> 4 Brazil 2000 80488 174504898
#> 5 China 1999 212258 1272915272
#> 6 China 2000 213766 1280428583

Important

This approach is particularly helpful when your data arrive in a combined format that
needs to be split for meaningful analysis.

6.6.2 Combining Columns with unite()

Conversely, the unite() function merges multiple columns into one.

Figure 6.5: Combining Multiple Columns into One Using unite()

Its syntax is:

unite(data, col = <name of new column>, ..., sep = <separator>, remove = <logical flag>)

Where:

• data: The data frame to be transformed.

• col: The name of the new column that will contain the combined values.

• ...: The columns to combine.

• sep: The separator to insert between values (defaults to "_" if not specified).

• remove: A logical flag (default TRUE) indicating whether to remove the original columns
after merging.

Example 2:

Imagine your TB dataset has separate "century" and "year" columns that you want to
combine into a single "year" column:

274

Create the data frame
tb_cases <- tibble(
country = c("Afghanistan", "Afghanistan", "Brazil", "Brazil", "China", "China"),
century = c("19", "20", "19", "20", "19", "20"),
year = c("99", "00", "99", "00", "99", "00"),
rate = c("745/19987071", "2666/20595360", "37737/172006362", "80488/174504898", "212258/1272915272", "213766/1280428583")

)

tb_cases

#> # A tibble: 6 x 4
#> country century year rate
#> <chr> <chr> <chr> <chr>
#> 1 Afghanistan 19 99 745/19987071
#> 2 Afghanistan 20 00 2666/20595360
#> 3 Brazil 19 99 37737/172006362
#> 4 Brazil 20 00 80488/174504898
#> 5 China 19 99 212258/1272915272
#> 6 China 20 00 213766/1280428583

You can merge "century" and "year" into a single column, also named "year", by specifying
no separator:

tb_cases |> unite(year, century, year, sep = "")

#> # A tibble: 6 x 3
#> country year rate
#> <chr> <chr> <chr>
#> 1 Afghanistan 1999 745/19987071
#> 2 Afghanistan 2000 2666/20595360
#> 3 Brazil 1999 37737/172006362
#> 4 Brazil 2000 80488/174504898
#> 5 China 1999 212258/1272915272
#> 6 China 2000 213766/1280428583

Important

This operation tidies your dataset by reducing two related columns into one, making
future analysis more straightforward.

275

6.6.3 Practice Quiz 6.2

Question 1:

Given the following tibble:

tb_cases <- tibble(
country = c("Brazil", "Brazil", "China", "China"),
year = c(1999, 2000, 1999, 2000),
rate = c("37737/172006362", "80488/174504898", "212258/1272915272", "213766/1280428583")

)

Which function would you use to split the "rate" column into two separate columns for cases
and population?

a) separate()

b) unite()

c) pivot_longer()

d) pivot_wider()

Question 2:

Which argument in separate() allows automatic conversion of new columns to appropriate
data types?

a) remove

b) auto
c) convert
d) into

Question 3:

Which function would you use to merge two columns into one, for example, combining separate
“century” and “year” columns?

a) separate()

b) unite()

c) pivot_longer()

276

d) pivot_wider()

Question 4:

In the separate() function, what does the sep argument define?

a) The new column names

b) The delimiter at which to split the column

c) The data frame to be merged

d) The columns to remove

Question 5:

Consider the following data frame:

tb_cases <- tibble(
country = c("Afghanistan", "Brazil", "China"),
century = c("19", "19", "19"),
year = c("99", "99", "99")

)

Which code correctly combines “century” and “year” into a single column “year” without any
separator?

a) tb_cases |> unite(year, century, year, sep = "")

b) tb_cases |> separate(year, into = c("century", "year"), sep = "")

c) tb_cases |> unite(year, century, year, sep = "_")

d) tb_cases |> pivot_longer(cols = c(century, year))

Question 6:

When using separate(), how can you retain the original column after splitting it?

a) Set remove = FALSE

b) Set convert = TRUE

c) Use unite() instead

277

d) Omit the sep argument

Question 7:

Which variant of separate() would you use to split a column at fixed character positions?

a) separate_wider_delim()

b) separate_wider_regex()

c) separate_wider_position()

d) separate()

Question 8:

By default, the unite() function removes the original columns after combining them.

a) True

b) False

Question 9:

What is the main benefit of using separate() on a column that combines multiple data points
(e.g. “745/19987071”)?

a) It facilitates the conversion of string data into numeric data automatically.

b) It simplifies further analysis by splitting combined information into distinct, analysable
components.

c) It merges the data with another dataset.

d) It increases data redundancy.

Question 10:

Which argument in unite() determines the character inserted between values when combining
columns?

a) separator

b) sep

c) col

278

d) delimiter

See the Solution to Quiz 6.2

6.6.4 Exercise 6.2.1: Transforming the Television Company Dataset

This exercise tests your data cleaning skills using the television-company-data.csv dataset,
which can be found in the r-data directory. If you do not already have the file, you may
download it from Google Drive.

Dataset Metadata

This dataset was gathered by a small television company aiming to understand the factors
influencing viewer ratings of the company. It contains viewer ratings and related metrics. The
variables are as follows:

• regard: Viewer rating of the television company (higher ratings indicate greater regard).

• gender: The gender with which the viewer identifies.

• views: The number of views.

• online: The number of times bonus online material was accessed.

• library: The number of times the online library was browsed.

• Shows: Scores for four different shows, each separated by a comma.

Tasks

1. Importing and Inspecting Data

• Locate the television-company-data.csv file in the r-data directory.

• Import the data into your R environment.

2. Data Tidying

• Create four new columns from the Shows column, naming them Show1 through
Show4.

• Create a new variable, mean_show, calculated as the mean of Show1 to Show4.

• Examine how the mean show scores vary by gender.

See the Solution to Exercise 6.2.1

279

https://drive.google.com/file/d/1eA9Dba1AJjx2lSFNheZRcXGRZ48bI2Ei/view?usp=drive_link

Table 6.3: Relational Keys in Action: Linking Datasets with Primary and Foreign Keys

(a) Students Table

student_id name age
1 Alice 20
2 Bob 22
3 Charlie 21

(b) Exam Scores Table

student_id score
1 85
2 90
4 78

6.7 Experiment 6.3: Combining Datasets with Joins

When you’re working with real-world data, it’s common to have information scattered across
multiple tables. In order to get a full picture and answer the questions you are interested
in, you often need to merge these datasets. In this section, we will dive into how you can
accomplish this in R using joins, a fundamental concept in both database management and
data analysis.

6.7.1 The Role of Keys

Before you begin joining datasets, it’s crucial to understand what keys are and why they
matter. In relational databases, a key is a column (or set of columns) that uniquely identifies
each row in your dataset. When you join tables, keys determine how rows are matched across
your datasets.

• Primary Key: Think of this as the unique identifier for each record in a table. For
example, in students table (Table 6.3a), the student_id is the primary key because it
uniquely identifies each student.

• Foreign Key: This is a column in another table that links back to the primary key of
the first table. In our case, the student_id in an exam scores table (Table 6.3b) would
act as a foreign key, connecting scores to the corresponding students.

To illustrate, consider these two datasets in Table 6.3:

In the Students table, the student_id column is the primary key that uniquely identifies each
student. In the Exam Scores table, student_id is used as a foreign key to refer back to the
Students table. We will use these two tables to illustrate the different types of joins.

280

6.7.2 Types of Joins

Joins are the backbone of relational data analysis, and the dplyr offers a family of join functions
to merge tables, each with a specific way of handling matches and non-matches. They all follow
a similar pattern:

join_function(x, y, by = "key_column")

Where:

• x: The first table (the “left” table).

• y: The second table (the “right table”).

• by: The column(s) to match on.

Let’s explore the main types: inner, left, right, and full joins. We wll use students and scores
to see how each one works.

6.7.2.1 Inner Join

An inner join keeps only the rows where the key matches in both tables. If there’s no match,
the row gets dropped. It’s the strictest join—think of it as finding the overlap between two
circles in a Venn diagram.

The syntax is:

inner_join(x, y, by = "key_column")

Example 1: Matching Students and Scores

Suppose you are a teacher who only wants to see data for students who are enrolled and took
the exam. Using Tables 6.3a and 6.3b:

students <- data.frame(student_id = 1:3, name = c("Alice", "Bob", "Charlie"), age = 20:22)

scores <- data.frame(student_id = c(1, 2, 4), score = c(85, 90, 78))

Inner join
students |> inner_join(scores, by = "student_id")

#> student_id name age score
#> 1 1 Alice 20 85
#> 2 2 Bob 21 90

281

Tip

What’s Happening:

• Alice (student_id 1) and Bob (student_id 2) appear because they’re in both tables.

• Charlie (student_id 3) is missing—he didn’t take the exam, so there’s no match in
scores.

• Student_id 4 is also out—it’s in scores but not students.

This join is perfect when you need complete data from both sides, like calculating averages
for students with scores.

Note

Think about how the result might change if we used left_join() instead?

6.7.2.2 The Left Join

A left join keeps every row from the left table (x) and brings along matching rows from the
right table (y). If there’s no match, you get NA in the columns from y.

The syntax is:

left_join(x, y, by = "key_column")

Example 2: Report Cards for All Students

Imagine you are preparing report cards and need every student listed, even if they missed the
exam:

Left join
students |> left_join(scores, by = "student_id")

#> student_id name age score
#> 1 1 Alice 20 85
#> 2 2 Bob 21 90
#> 3 3 Charlie 22 NA

282

Tip

What’s Happening:

• All three students from students are here because it’s the left table.

• Alice and Bob have their scores (85 and 90).

• Charlie gets an NA for score—he’s enrolled but didn’t take the test.

• Student_id 4 from scores is excluded—it’s not in the left table.

Use this when the left table is your priority, like ensuring every student gets a report
card.

Warning

Consider what happens if the id column contains duplicates in either df1 or df2. This
could result in more rows than expected in the joined dataset.

6.7.2.3 The Right Join

A right join flips it around: it keeps all rows from the right table (y) and matches them with
the left table (x), filling in NA where needed.

The syntax is:

right_join(x, y, by = "key_column")

Example 3: All Exam Scores

Now, suppose the exam office wants every score reported, even for students not in your class
list:

Right join

students |> right_join(scores, by = "student_id")

#> student_id name age score
#> 1 1 Alice 20 85
#> 2 2 Bob 21 90
#> 3 4 <NA> NA 78

283

Tip

What’s Happening:

• All three scores from scores are included because it’s the right table.

• Alice and Bob match up with their info from students.

• Student_id 4 has a score (78) but no name or age (NA)—they’re not in students.

This is handy when the right table drives the analysis, like auditing all exam results.

6.7.2.4 The Full Join

A full join keeps everything—every row from both tables, matching where possible and using
NA for gaps. It’s the most inclusive join.

The syntax is:

full_join(x, y, by = "key_column")

Example 4: Complete Audit

For an audit, you want every student and every score, matched or not:

Full join

students |> full_join(scores, by = "student_id")

#> student_id name age score
#> 1 1 Alice 20 85
#> 2 2 Bob 21 90
#> 3 3 Charlie 22 NA
#> 4 4 <NA> NA 78

Tip

What’s Happening:

• Every student_id from both tables is here.

• Alice and Bob are fully matched.

284

• Charlie has no score (NA in score).

• Student_id 4 has a score but no student info (NA in name and age).

This join is your go-to when you can’t afford to lose any data, like reconciling records.

6.7.3 Joins with Different Key Names

What happens when the keys don’t have the same name? Real datasets often throw this
curveball—the primary key in one table might be club_code, while the foreign key in another
is group_id. No worries—dplyr can still connect them.

Let’s try a new example:

clubs <- tibble(club_code = c("A01", "B02", "C03"), club_name = c("Chess Club", "Robotics Team", "Art Society"))

members <- tibble(member_id = 101:103, name = c("Alice", "Bob", "Charlie"), group_id = c("A01", "B02", "D04"))

Check them out:

clubs

#> # A tibble: 3 x 2
#> club_code club_name
#> <chr> <chr>
#> 1 A01 Chess Club
#> 2 B02 Robotics Team
#> 3 C03 Art Society

members

#> # A tibble: 3 x 3
#> member_id name group_id
#> <int> <chr> <chr>
#> 1 101 Alice A01
#> 2 102 Bob B02
#> 3 103 Charlie D04

285

Here, club_code is the primary key in clubs, and group_id is the foreign key in members.
They’re different names, but their values (like “A01” and “B02”) match up.

Example:

You are a club coordinator and want to see who’s in which club, despite the naming mismatch.
Use an inner join with a named vector in by:

clubs |> inner_join(members, by = c("club_code" = "group_id"))

#> # A tibble: 2 x 4
#> club_code club_name member_id name
#> <chr> <chr> <int> <chr>
#> 1 A01 Chess Club 101 Alice
#> 2 B02 Robotics Team 102 Bob

Tip

What’s Happening:

• The by = c("club_code" = "group_id") tells R to match club_code from clubs
with group_id from members.

• Alice (A01) and Bob (B02) match their clubs.

• Charlie (D04) is dropped—there’s no D04 in clubs.

This trick works with any join type. For instance, a full join would include Charlie and
the unmatched C03 club:

clubs |> full_join(members, by = c("club_code" = "group_id"))

#> # A tibble: 4 x 4
#> club_code club_name member_id name
#> <chr> <chr> <int> <chr>
#> 1 A01 Chess Club 101 Alice
#> 2 B02 Robotics Team 102 Bob
#> 3 C03 Art Society NA <NA>
#> 4 D04 <NA> 103 Charlie

Joins are your superpower for combining datasets in R. With inner_join(), you get the over-
lap; left_join() prioritizes the left table; right_join() favours the right; and full_join()
keeps it all. Plus, you can handle differently named keys with a simple tweak to by.

286

6.7.4 Practice Quiz 6.3

Question 1:

Given the following data frames:

df1 <- data.frame(id = 1:4, name = c("Ezekiel", "Bob", "Samuel", "Diana"))

df2 <- data.frame(id = c(2, 3, 5), score = c(85, 90, 88))

Which join would return only the rows with matching id values in both data frames?
a) left_join()
b) right_join()
c) inner_join()
d) full_join()

Question 2:

Using the same data frames, which join function retains all rows from df1 and fills unmatched
rows with NA?

a) left_join()

b) inner_join()

c) right_join()

d) full_join()

Question 3:

Which join function ensures that all rows from df2 are preserved, regardless of matches in
df1?

a) left_join()

b) inner_join()

c) full_join()
d) right_join()

Question 4:

What does a full join return when applied to df1 and df2?

287

a) Only matching rows

b) All rows from both data frames, with NA for unmatched entries

c) Only rows from df1

d) Only rows from df2

Question 5:

In a join operation, what is the purpose of the by argument?

a) It specifies the common column(s) used to match rows between the data frames

b) It orders the data frames

c) It selects which rows to retain

d) It converts keys to numeric values

Question 6:

If df1 contains duplicate values in the key column, what is a likely outcome of an inner join
with df2?

a) The joined data frame may contain more rows than either original data frame due to
duplicate matches.

b) The join will remove all duplicates automatically.

c) The function will return an error.

d) The duplicate rows will be merged into a single row.

Question 7:

An inner join returns all rows from both data frames, regardless of whether there is a match.

a) True

b) False

Question 8:

Consider the following alternative key columns:

288

df1 <- data.frame(studentID = 1:4, name = c("Alice", "Bob", "Charlie", "Diana"))

df2 <- data.frame(id = c(2, 3, 5), score = c(85, 90, 88))

How can you join these two data frames when the key column names differ?

a) Rename one column before joining.

b) Use by = c("studentID" = "id") in the join function.
c) Use an inner join without specifying keys.

d) Convert the keys to factors.

Question 9:

What is a ‘foreign key’ in the context of joining datasets?

a) A column in one table that uniquely identifies each row.

b) A column in one table that refers to the primary key in another table.
c) A column that has been split into multiple parts.

d) A column that is combined using unite().

Question 10:

Which join function would be most appropriate if you want a complete union of two datasets,
preserving all rows from both?

a) full_join()
b) inner_join()

c) left_join()

d) right_join()

See the Solution to Quiz 6.3

6.7.5 Exercise 6.3.1: Relational Analysis with the NYC Flights 2013 Dataset

This exercise tests your relational analysis skills using the nycflights13 dataset, which is
available as an R package. To access it, install and load the package.

289

Dataset Metadata

The nycflights13 dataset contains information on all 336,776 outbound flights from New
York City airports (Newark Liberty International Airport (EWR), John F. Kennedy Interna-
tional Airport (JFK) and LaGuardia Airport (LGA)) in 2013, compiled from various sources,
including the U.S. Bureau of Transportation Statistics. It is designed to explore the relation-
ships between flight details, aircraft information, airport data, weather conditions and airline
carriers. The dataset comprises five main tables:

• flights: Details of each flight, including departure and arrival times, delays and iden-
tifiers such as tailnum (aircraft tail number), origin (departure airport), dest (desti-
nation airport) and carrier (airline code). This table contains 336,776 rows and 19
columns.

• planes: Information about aircraft, such as the manufacturer, model and year built,
linked by the tailnum key. This table contains 3,322 rows and 9 columns.

• airports: Data on airports, including location and name, linked by the faa code (used
in flights$origin and flights$dest). This table contains 1,458 rows and 8 columns.

• weather: Hourly weather data for New York City airports, linked by origin and
time_hour. This table contains 26,115 rows and 15 columns.

• airlines: Airline names and their carrier codes, linked by carrier. This table contains
16 rows and 2 columns.

Tasks

1. Importing and Inspecting Data

• Install and load the nycflights13 package in your R environment.

• Access the flights and planes tables, and inspect their structure to familiarise
yourself with their variables.

• Identify the common key (tailnum) that links flights and planes, and note any
potential mismatches (for example, flights without corresponding plane data).

2. Relational Analysis with Joins

• Perform an inner_join between flights and planes using the tailnum key. How
many rows are in the result, and why might this differ from the number of rows in
flights?

• Perform a left_join between flights and planes using the tailnum key. Com-
pare the number of rows with the original flights table, and explain what happens
to flights without matching plane data.

290

• Perform a right_join between flights and planes using the tailnum key. How
does this differ from the left_join result, and what does it reveal about planes
not used in flights?

• Perform a full_join between flights and planes using the tailnum key. Describe
how this result combines information from both tables, including cases with no
matches.

• Create a summary table showing the number of flights per aircraft manufacturer
(from planes$manufacturer) after performing a left_join. Handle missing values
appropriately (for example, label flights with no plane data as “Unknown”).

• Produce a bar plot to visualise the distribution of flights across the top five aircraft
manufacturers based on your summary table.

Happy joining!

See the Solution to Exercise 6.3.1

6.8 Reflective Summary

In Lab 6, you have acquired advanced data transformation skills essential for effective data
analysis:

• Reshaping Data: You learned to convert datasets between wide and long formats
using pivot_longer() and pivot_wider(). Mastering these techniques is foundational
for conducting time series analyses and creating visualisations.

• Separating and Uniting Columns: You explored how to split a single column into
multiple columns with separate() and combine several columns into one with unite(),
thereby enhancing the structure of your data.

• Combining Datasets: You became familiar with various join operations in dplyr,
enabling you to merge datasets seamlessly and manage issues such as mismatched keys
and duplicates.

What’s Next?

In the next lab, we will delve into data visualisation where will transform raw data into a
visual language that reveals patterns, highlights trends, and conveys stories in ways that
are easy to understand and interpret.

291

7 Data Visualisation

7.1 Introduction

In Lab 7, we embark on an exploration into the transformative realm of data visualisation
using R. Our approach is twofold. First, we introduce ggplot2—a powerful package built on the
Grammar of Graphics that enables you to craft professional, layered, and highly customisable
visualisations. Second, we examine Base R graphics, a built-in solution that requires no
additional packages and is perfectly suited for quick, exploratory plots. Although ggplot2 offers
exceptional flexibility and elegance, Base R graphics remain indispensable for rapid analysis;
they are straightforward, intuitive, and ideally suited to simple or preliminary visualisations.

Through this lab, you will learn how to effectively map data variables to visual properties, build
complex plots with ggplot2, and harness the power of R’s native plotting functions. This dual
approach empowers you to choose the most appropriate method for your analytical needs.

7.2 Learning Objectives

By the end of this lab, you will be able to:

• Understand the Grammar of Graphics Framework:
Grasp how ggplot2’s structured, layered approach enables the step-by-step construction
of complex plots.

• Create a Range of Visualisations with ggplot2:
Develop scatter plots, bar charts, histograms, boxplots, and more to represent your data
effectively.

• Customise Visual Elements in ggplot2:
Adjust themes, colours, labels, scales, and facets to enhance both clarity and visual
appeal.

• Utilise Base R Graphics for Exploratory Analysis:
Construct quick, function-based plots using built-in functions such as plot(), hist(),
boxplot(), barplot(), and pie(), and apply customisations directly through graphical
parameters.

292

• Integrate Data Manipulation with Visualisation:
Combine data preparation tools like dplyr with both ggplot2 and Base R graphics to
develop seamless and insightful workflows.

By completing this lab, you will become proficient in visualising data and communicating your
findings effectively. Let us now transform raw data into impactful stories!

7.3 What is Data Visualization?

Data visualisation is both an art and a science—it is the practice of representing data through
graphical means, such as charts, graphs, and maps. By transforming numerical or textual
information into visual formats, we can uncover patterns, trends, and insights that might
be hidden in raw data. This process breathes life into data, turning abstract numbers into
compelling stories that are easy to understand and share.

Figure 7.1: Data Scientist Analyzing Large-Scale Data[^lab7-1].

In today’s data-driven world, the ability to visualise data effectively is an essential skill across
various industries—be it data science, finance, education, or healthcare. As the volume and
complexity of data continue to grow, visualisation provides the means to make sense of it all
and to share insights in a compelling and accessible manner.

Visual representations often prove more effective than descriptive statistics or tables for
analysing data, as they allow us to:

• Identify Patterns and Trends: Spot relationships within the data that may not be
immediately apparent.

293

• Understand Distributions: Clearly see how data is spread out, where concentrations
or gaps exist.

• Detect Outliers: Quickly identify data points that deviate markedly from the rest of
the dataset.

• Communicate Insights: Present findings in a manner that is both engaging and easy
for diverse audiences to grasp.

By leveraging data visualisation, we enhance our capacity to analyse complex datasets and to
communicate our discoveries with clarity.

7.4 Importance of Data Visualisation

Data visualisation plays a pivotal role in the analytical process for several reasons:

1. Simplifies Complex Data:
Large datasets can be overwhelming when viewed in their raw form. Visualisation distils
and structures this data, rendering it comprehensible at a glance. For instance, a line
chart can succinctly illustrate trends over time that would be challenging to discern from
a mere table of numbers.

2. Reveals Patterns and Trends:
Visual tools help in identifying relationships within the data, such as correlations between
variables or changes over time. This often leads to the generation of new insights and
hypotheses—for example, a scatter plot may reveal a positive correlation between hours
studied and exam scores.

3. Supports Decision Making:
Visual evidence provides a persuasive basis for conclusions and recommendations.
Decision-makers can rapidly grasp complex information and make informed choices,
especially when key performance indicators are highlighted on a well-designed dashboard.

4. Engages the Audience:
Visuals are naturally more engaging than raw numbers or text. They capture atten-
tion and enhance the persuasiveness of presentations by effectively conveying complex
information in a digestible format.

5. Facilitates Communication:
Visualisation transcends language barriers and simplifies the communication of intricate
ideas. It fosters collaboration across disciplines by providing a common visual language.

294

7.5 Choosing the Right Visualization

Selecting the appropriate type of visualisation is critical for effectively communicating your
data’s story. Consider the following factors:

1. Define Your Objective:
Determine whether you want to compare values, illustrate composition, understand dis-
tribution, or analyse trends over time.

2. Understand Your Data:
Identify whether your variables are categorical, numerical, or time-series, and decide
whether you are interested in relationships between variables, distributions, or outliers.

3. Know Your Audience:
Tailor your visualisation to the background and expertise of your audience—ensure that
the chosen visualisation is neither too complex nor overly simplistic.

4. Consider Practical Constraints:
Think about the medium of presentation (digital, print, or verbal), and assess data
quality and quantity. Large datasets may need aggregation, and lower-quality data may
restrict the types of visualisations available.

5. Aesthetics and Clarity:
Employ colour, shape, and size judiciously to enhance comprehension without overwhelm-
ing the viewer. Avoid clutter by keeping designs clean and focused.

6. Ethical Representation:
Ensure that scales and representations are accurate and truthful, maintaining credibility
and avoiding misleading interpretations.

By carefully weighing these considerations, you can select visualisations that not only effec-
tively present your data but also resonate with your audience.

7.6 Types of Data Visualisation Analysis

Data visualisation can be broadly classified into three categories based on the number of
variables analysed: univariate, bivariate, and multivariate.

295

Figure 7.2: Types of Data Analysis: Univariate, Bivariate, and Multivariate Techniques

Each category offers a unique lens through which to interpret your data, allowing you to
uncover different insights.

• Univariate Analysis
Univariate analysis involves examining a single variable at a time. This approach helps
you understand the distribution, central tendency, and variability of the data. For ex-
ample, you might create a histogram to explore the age distribution within a population.
This visualisation will reveal patterns such as skewness, clustering, and the presence of
outliers, enabling you to gain a clear understanding of the variable’s overall behaviour.

• Bivariate Analysis
Bivariate analysis focuses on exploring the relationship between two variables. This
type of analysis is particularly useful for identifying associations or correlations between
variables. For instance, a scatter plot can be used to investigate the relationship between
advertising spend and sales revenue. By plotting one variable against the other, you can
observe trends, clusters, or even potential causal relationships, providing deeper insight
into how the variables interact.

• Multivariate Analysis
Multivariate analysis extends beyond two variables to examine the interplay among three
or more variables simultaneously. This approach is invaluable when dealing with com-
plex data sets where multiple factors may be influencing an outcome. For example, a
bubble chart or parallel coordinates plot might be employed to evaluate factors affecting
customer satisfaction by analysing service quality, price, and brand reputation all at
once. This holistic view helps you capture the multidimensional nature of your data,
revealing intricate relationships that might otherwise go unnoticed.

Understanding the type of analysis you wish to perform will guide you in selecting the most
appropriate visualisation techniques to extract the insights you need.

296

7.7 Common Data Visualization Techniques

While there is an abundance of graphs and charts, mastering the core types will equip you
with the essential tools for most analytical tasks.

Figure 7.3: Common Data Visualisation Techniques

Let’s now explore some of the most frequently used visualisation techniques.

7.7.1 Bar Chart

A bar chart represents categorical data using rectangular bars, with the length of each bar
proportional to the corresponding value. Bars can be plotted vertically or horizontally.

When to Use:

• Comparing quantities across different categories.

• Illustrating rankings or frequencies.

• Displaying discrete data.

Example Uses:

• Comparing sales figures across regions.

• Showing student enrolment numbers across courses.

• Visualising survey responses by category.

297

Key Features:

• Categories typically appear on the x-axis, while values are on the y-axis.

• Bars are spaced to emphasise that the data is discrete.

Figure 7.4: Bar Chart Illustration

7.7.2 Histogram

A histogram groups continuous data into bins, displaying the frequency of data points within
each bin.

When to Use:

• Understanding the distribution of continuous data.

• Identifying patterns such as skewness, modality, or outliers.

• Assessing the probability distribution of a dataset.

Example Uses:

• Displaying the distribution of ages in a population.

• Showing the frequency of test scores among students.

• Analysing the spread of housing prices.

Key Features:

298

• The x-axis represents the continuous data divided into bins.

• The y-axis indicates frequency or count.

• Adjacent bars reflect the continuous nature of the data.

Figure 7.5: Histogram Illustration

7.7.3 Circular charts

A circular chart is a type of statistical graphic represented in a circular format to illustrate
numerical proportions. A pie chart (Figure 7.6a) and a doughnut chart (Figure 7.6b) are
examples of circular charts. Each slice or segment represents a category’s contribution to the
whole, making it easy to visualize parts of a whole in a compact form.

When to Use:

• Showing parts of a whole.

• Representing percentage or proportional data.

• Comparing categories within a dataset where the total represents 100%.

• When there are a limited number of categories (ideally less than six).

Example Uses:

• Displaying market share of different companies.

• Illustrating budget allocations across departments.

299

• Showing survey results for single-choice questions.

Key Features:

• The circle represents the entire dataset.

• Slices are proportional to each category’s contribution.

• Doughnut charts provide additional central space for extra labelling or data.

(a) Pie Chart Illustration (b) Doughnut Chart Illustration

Figure 7.6: Circular Statistical Charts

Note

Circular charts can be challenging to interpret with many small or similarly sized slices.
In such cases, consider using bar charts or stacked charts for clarity.

7.7.4 Scatter Plot

A scatter plot uses Cartesian coordinates to display values for two numerical variables. Each
point represents an observation, allowing you to explore relationships or correlations between
variables.

When to Use:

• Exploring relationships or correlations between two continuous variables.

• Detecting patterns, trends, clusters, or outliers.

300

Example Uses:

• Examining the relationship between study hours and exam scores.

• Analysing the correlation between advertising spend and sales revenue.

• Investigating associations between temperature and energy consumption.

Key Features:

• One variable is plotted on the x-axis, and another on the y-axis.

• Data points are distributed in two-dimensional space.

• A trend line can be added to highlight the overall relationship.

Figure 7.7: Scatter Plot Illustration

7.7.5 Box and Whisker Plot

A box plot summarises a dataset by displaying its median, quartiles, and potential outliers
along a number line.

When to Use:

• Comparing distributions across different categories.

• Identifying central tendency, spread, and skewness.

301

• Highlighting outliers.

Example Uses:

• Comparing test scores across classrooms..

• Analysing the spread of salaries in different industries

• Visualising delivery times from various suppliers.

Key Features:

• The box shows the interquartile range (IQR), from the first quartile (Q1) to the third
quartile (Q3).

• The line inside the box indicates the median.

• Whiskers extend to the minimum and maximum values within 1.5 × IQR.

• Points outside the whiskers represent outliers.

(a) Boxplot Explaining the Statistical Components(b) Boxplots Comparing Body Mass Across Species

Figure 7.8: Box Plot Illustration

7.7.6 Line Chart

A line chart displays information as a series of data points called ‘markers’ connected by
straight line segments. It is commonly used to visualise data that changes over time.

When to Use:

• Tracking changes or trends over intervals (e.g. time).

• Comparing multiple time series.

302

• Showing continuous data progression.

Example Uses:

• Monitoring stock prices.

• Showing temperature changes throughout the day.

• Illustrating website traffic trends.

Key Features:

• The x-axis represents time or sequential data.

• The y-axis shows quantitative values.

• Different lines may represent various categories or groups.

Figure 7.9: Line Chart Illustration

7.7.7 Areas chart

An area chart is similar to a line chart but fills the area below the line, emphasising the
magnitude of values over time.

When to Use:

• Showing cumulative totals over time.

• Visualizing part-to-whole relationships.

• Comparing multiple quantities over time.

303

Example Uses:

• Displaying total sales over months.

• Visualising population growth.

• Comparing energy consumption by source.

Key Features:

• Time or sequential data on the x-axis.

• Quantitative values on the y-axis.

• The area beneath the line is filled, highlighting cumulative magnitude.

Figure 7.10: Area Chart Illustration

Tip

These core visualisation techniques form the foundation of data storytelling. Mastering
them equips you with the tools necessary for most day-to-day analytical tasks. Remember,
successful data visualisation is not only about selecting the right chart type, but also
about achieving clarity, accuracy, and effective communication of your intended message.

7.8 Experiment 7.1: Data Visualization with ggplot2

R offers several systems for making graphs, but ggplot2 stands out as one of the most elegant
and versatile tools for creating high-quality visualisations. As part of the tidyverse, ggplot2 is

304

built upon the principles of the Grammar of Graphics—a systematic framework for describing
and constructing graphs. This approach enables you to map data variables to visual properties
in a coherent manner, allowing for the creation of a wide variety of statistical graphics.

Advantages of Using ggplot2

Let’s explore the key benefits that make ggplot2 a preferred choice for data visualisation in
R.

• Consistency and Grammar: Its structured, layered approach simplifies the process
of building complex plots.

• Customisation: Nearly every aspect of a plot can be tailored to your specific needs.

• Extension: ggplot2 is highly extensible, with additional packages such as ggthemes,
ggrepel, and plotly available for further customisation and interactivity.

• Professional Quality: It produces publication-ready graphics that are ideal for reports,
presentations, and academic papers.

7.8.1 Understanding the Grammar of Graphics

At its core, the Grammar of Graphics breaks down a graphic into semantic components:

1. Data: The dataset to be visualised.

2. Aesthetics (aes()): The mappings between data variables and visual properties such
as position, colour, size, shape, and transparency. For example:

• x: Variable on the x-axis

• y: Variable on the y-axis

• fill: Fill color for areas like bars

• color: Colour of points, lines, or areas

• size: Size of points or lines

• shape: Shape of points

• alpha: Transparency level

• group: Grouping variable for series of points

• facet: For creating small multiples

305

3. Geometric Objects (or geoms): These are the visual building blocks in ggplot2
that define the type of plot being created. They determine how data points are visually
represented by specifying the form of the plot elements. Each geom_ function corresponds
to a specific type of chart, allowing you to create a diverse range of plots. Examples
include:

• geom_point() for a scatter plot

• geom_smooth() for adding trend lines or smoothing curves on a scatter plot

• geom_bar() for a bar chart

• geom_col() for bar charts using precomputed values

• geom_histogram() for a histogram

• geom_boxplot() for a boxplot

• geom_violin() for a violin plot

• geom_freqpoly() for a frequency polygon

• geom_line() for a line chart

• geom_area() for an area chart

Other Layers:

Additional layers enhance or modify your plot, allowing for customization and refinement:

4. Statistical Transformations (stats): Computations applied to the data before plot-
ting, such as summarising or smoothing data. For example, stat_smooth() adds a
smoothed line to a scatter plot.

5. Scales: These control how data values are translated into aesthetic values, including
axis ranges and colour gradients.

6. Coordinate Systems: Define the space in which the data is plotted, such as Carte-
sian coordinates (coord_cartesian()), polar coordinates (coord_polar()), or flipped
coordinates (coord_flip() - to swap the x and y axes).

7. Facets: Create multiple panels (small multiples) by splittting the data based on one or
more variables, using facet_wrap() or facet_grid().

8. Themes: Customise non-data elements like backgrounds, gridlines, and text using pre-
built themes such as theme_minimal(), theme_bw(), or theme_classic(), or by modi-
fying individual elements with theme().

9. Labels: Add titles, axis labels, legend titles, and annotations with the labs() function.

306

7.8.2 Building Plots with ggplot2

To create a plot using ggplot2, start with the ggplot() function, specifying your data and
aesthetic mappings, then add layers with the + operator. For example:

ggplot(data = <DATA>, aes(<MAPPINGS>)) +
<GEOM_FUNCTION> +
<OTHER_LAYERS>

Alternatively, you can use the pipe operator:

data |> ggplot(aes(<MAPPINGS>)) +
<GEOM_FUNCTION> +
<OTHER_LAYERS>

Tip

For a detailed breakdown of ggplot2 components, refer to Section 7.8.1.

7.8.3 Example Datasets

We begin our visualisation journey using five widely recognised datasets: mtcars, iris,
diamonds, economics, and heart.

1. The mtcars Dataset

The built-in mtcars dataset contains information on fuel consumption and various automobile
design and performance features for 32 car models from the 1973–74 era. It is ideal for exploring
relationships such as those between weight, horsepower, and fuel efficiency.

library(tidyverse)

mtcars |> glimpse()

#> Rows: 32
#> Columns: 11
#> $ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8,~
#> $ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8,~
#> $ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 16~
#> $ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180~
#> $ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92,~

307

#> $ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.~
#> $ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18~
#> $ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,~
#> $ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,~
#> $ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3,~
#> $ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2,~

Before visualisation, it is important to transform the data appropriately. For example, we
will convert variables such as carb, cyl, and vs to factors because they represent categorical
information rather than continuous numerical values. Converting these variables to factors
ensures they are treated as discrete categories during analysis and visualisation, allowing for
more accurate grouping and comparison.

mtcars <- mtcars |> mutate(
across(c(carb, cyl, vs), as.factor)

)

2. The iris Dataset

The built-in iris dataset includes measurements of sepal length, sepal width, petal length,
and petal width for 150 iris flowers, representing three different species. This classic dataset
is widely used for classification and clustering tasks.

iris |> glimpse()

#> Rows: 150
#> Columns: 5
#> $ Sepal.Length <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.~
#> $ Sepal.Width <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.~
#> $ Petal.Length <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.~
#> $ Petal.Width <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.~
#> $ Species <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa, s~

3. The diamonds Dataset

Provided by ggplot2, the diamonds dataset includes detailed information on nearly 54,000
diamonds, such as carat, cut, colour, and clarity, prices. It is a valuable resource for exploring
the relationships between diamond quality factors and price.

diamonds |> glimpse()

308

#> Rows: 53,940
#> Columns: 10
#> $ carat <dbl> 0.23, 0.21, 0.23, 0.29, 0.31, 0.24, 0.24, 0.26, 0.22, 0.23, 0.~
#> $ cut <ord> Ideal, Premium, Good, Premium, Good, Very Good, Very Good, Ver~
#> $ color <ord> E, E, E, I, J, J, I, H, E, H, J, J, F, J, E, E, I, J, J, J, I,~
#> $ clarity <ord> SI2, SI1, VS1, VS2, SI2, VVS2, VVS1, SI1, VS2, VS1, SI1, VS1, ~
#> $ depth <dbl> 61.5, 59.8, 56.9, 62.4, 63.3, 62.8, 62.3, 61.9, 65.1, 59.4, 64~
#> $ table <dbl> 55, 61, 65, 58, 58, 57, 57, 55, 61, 61, 55, 56, 61, 54, 62, 58~
#> $ price <int> 326, 326, 327, 334, 335, 336, 336, 337, 337, 338, 339, 340, 34~
#> $ x <dbl> 3.95, 3.89, 4.05, 4.20, 4.34, 3.94, 3.95, 4.07, 3.87, 4.00, 4.~
#> $ y <dbl> 3.98, 3.84, 4.07, 4.23, 4.35, 3.96, 3.98, 4.11, 3.78, 4.05, 4.~
#> $ z <dbl> 2.43, 2.31, 2.31, 2.63, 2.75, 2.48, 2.47, 2.53, 2.49, 2.39, 2.~

4. The economics Dataset

This dataset, also from ggplot2, comprises US economic time series data, including variables
like unemployment, personal savings rate, and inflation over several decades. It is excellent
for time series analyses and exploring economic trends.

economics |> glimpse()

#> Rows: 574
#> Columns: 6
#> $ date <date> 1967-07-01, 1967-08-01, 1967-09-01, 1967-10-01, 1967-11-01, ~
#> $ pce <dbl> 506.7, 509.8, 515.6, 512.2, 517.4, 525.1, 530.9, 533.6, 544.3~
#> $ pop <dbl> 198712, 198911, 199113, 199311, 199498, 199657, 199808, 19992~
#> $ psavert <dbl> 12.6, 12.6, 11.9, 12.9, 12.8, 11.8, 11.7, 12.3, 11.7, 12.3, 1~
#> $ uempmed <dbl> 4.5, 4.7, 4.6, 4.9, 4.7, 4.8, 5.1, 4.5, 4.1, 4.6, 4.4, 4.4, 4~
#> $ unemploy <dbl> 2944, 2945, 2958, 3143, 3066, 3018, 2878, 3001, 2877, 2709, 2~

5. The heart Dataset

Derived from the Framingham Heart Study, the heart dataset contains 5,209 observations
with 17 variables that capture essential cardiovascular health information. Variables include
participant status, cause of death (if applicable), age at CHD diagnosis, sex, age at the start
of observation, height, weight, blood pressure measurements, metropolitan relative weight,
smoking habits, serum cholesterol, and categorical statuses for cholesterol, blood pressure,
weight, and smoking. This dataset is ideal for exploring risk factors associated with heart
disease. The heart.xlsx file is available in the r-data directory. If you do not have it yet,
you can download it from Google Drive.

309

https://support.sas.com/documentation/onlinedoc/viya/examples.htm
https://docs.google.com/spreadsheets/d/1BFfCNhRYHikSjHIVzFPVfQkL2q7j-eB8/edit?usp=drive_link&ouid=106220036497399452279&rtpof=true&sd=true

library(readxl)
library(janitor)
heart <- read_xlsx("r-data/heart.xlsx", sheet = 1)
heart <- heart |> clean_names()
heart |> glimpse()

#> Rows: 5,209
#> Columns: 17
#> $ status <chr> "Dead", "Dead", "Alive", "Alive", "Alive", "Alive", "Al~
#> $ death_cause <chr> "Other", "Cancer", NA, NA, NA, NA, NA, "Other", NA, "Ce~
#> $ age_ch_ddiag <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 57, 55, 79,~
#> $ sex <chr> "Female", "Female", "Female", "Female", "Male", "Female~
#> $ age_at_start <dbl> 29, 41, 57, 39, 42, 58, 36, 53, 35, 52, 39, 33, 33, 57,~
#> $ height <dbl> 62.50, 59.75, 62.25, 65.75, 66.00, 61.75, 64.75, 65.50,~
#> $ weight <dbl> 140, 194, 132, 158, 156, 131, 136, 130, 194, 129, 179, ~
#> $ diastolic <dbl> 78, 92, 90, 80, 76, 92, 80, 80, 68, 78, 76, 68, 90, 76,~
#> $ systolic <dbl> 124, 144, 170, 128, 110, 176, 112, 114, 132, 124, 128, ~
#> $ mrw <dbl> 121, 183, 114, 123, 116, 117, 110, 99, 124, 106, 133, 1~
#> $ smoking <dbl> 0, 0, 10, 0, 20, 0, 15, 0, 0, 5, 30, 0, 0, 15, 30, 10, ~
#> $ age_at_death <dbl> 55, 57, NA, NA, NA, NA, NA, 77, NA, 82, NA, NA, NA, NA,~
#> $ cholesterol <dbl> NA, 181, 250, 242, 281, 196, 196, 276, 211, 284, 225, 2~
#> $ chol_status <chr> NA, "Desirable", "High", "High", "High", "Desirable", "~
#> $ bp_status <chr> "Normal", "High", "High", "Normal", "Optimal", "High", ~
#> $ weight_status <chr> "Overweight", "Overweight", "Overweight", "Overweight",~
#> $ smoking_status <chr> "Non-smoker", "Non-smoker", "Moderate (6-15)", "Non-smo~

We transformed the variable smoking_status as ordered factor:

heart <- heart |> mutate(smoking_status = factor(smoking_status, levels = c(
"Non-smoker", "Light (1-5)", "Moderate (6-15)", "Heavy (16-25)",
"Very Heavy (> 25)"

)))

Creating Visualisations with ggplot2

7.8.4 Creating a Scatter Plot

Suppose you wish to explore the relationship between engine displacement and miles per gallon
using the mtcars dataset. You can create a scatter plot as follows:

310

ggplot(data = mtcars, aes(x = disp, y = mpg)) +
geom_point() +
labs(

title = "Engine Displacement vs. Miles Per Gallon",
x = "Displacement (cu.in.)",
y = "Miles per Gallon"

) +
theme_minimal()

10

15

20

25

30

35

100 200 300 400
Displacement (cu.in.)

M
ile

s
pe

r
G

al
lo

n

Engine Displacement vs. Miles Per Gallon

In this example:

• Data: mtcars

• Aesthetics: x = disp, y = mpg

• Geometric Object: geom_point() adds points to represent each car.

• Labels: labs() adds a title and axis labels.

• Theme: theme_minimal() provides a clean, minimalist background.

Interpretation

The scatter plot clearly shows an inverse relationship: cars with higher displacement
generally have lower fuel efficiency (mpg).

311

7.8.4.1 Customizing Aesthetics and Geoms

For example, to distinguish between cylinder groups, you can map variable cyl to colour:

ggplot(data = mtcars, aes(x = disp, y = mpg, color = cyl)) +
geom_point(size = 3) +
labs(

title = "Engine Displacement vs. MPG by Cylinder Count",
x = "Displacement (cu.in.)",
y = "Miles per Gallon",
color = "Cylinders"

) +
theme_classic()

10

15

20

25

30

35

100 200 300 400
Displacement (cu.in.)

M
ile

s
pe

r
G

al
lo

n

Cylinders

4

6

8

Engine Displacement vs. MPG by Cylinder Count

Tip

The color aesthetic maps the number of cylinders (cyl) to different colors, allowing you
to distinguish groups within the data.

7.8.4.2 Incorporating Regression Line

To add a regression line to a scatter plot, you can use geom_smooth():

312

ggplot(data = mtcars, aes(x = disp, y = mpg)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, color = "blue") +
labs(

title = "Linear Regression of MPG on Displacement",
x = "Displacement (cu.in.)",
y = "Miles per Gallon"

) +
theme_bw()

#> `geom_smooth()` using formula = 'y ~ x'

10

15

20

25

30

35

100 200 300 400
Displacement (cu.in.)

M
ile

s
pe

r
G

al
lo

n

Linear Regression of MPG on Displacement

Tip

The geom_smooth() function adds a linear regression line to your scatter plot, offering
valuable insight into the overall trend.

7.8.4.3 Faceting for Multi-Panel Plots

Faceting enables you to split data into subsets, displaying each in its own panel. For example,
the following code facets the scatter plot by gear:

313

ggplot(data = mtcars, aes(x = disp, y = mpg)) +
geom_point() +
facet_wrap(~gear) +
labs(

title = "Engine Displacement vs. MPG Faceted by Gear Count",
x = "Displacement (cu.in.)",
y = "Miles per Gallon"

) +
theme_light()

3 4 5

100 200 300 400 100 200 300 400 100 200 300 400

10

15

20

25

30

35

Displacement (cu.in.)

M
ile

s
pe

r
G

al
lo

n

Engine Displacement vs. MPG Faceted by Gear Count

Tip

This code creates a scatter plot for each unique value of gear, allowing for easy compar-
ison across groups.

7.8.5 Creating Boxplots

Suppose you wish to examine the distribution of weight in the heart dataset using a boxplot.
You can create it as follows:

314

Boxplot of a single continuous variable
heart |>
ggplot(aes(x = "", y = weight)) +
geom_boxplot(fill = "lightblue", width = 0.3) +
labs(

title = "Distribution of Weight",
x = NULL,
y = "Weight (pounds)"

) +
theme_minimal()

100

150

200

250

300

W
ei

gh
t (

po
un

ds
)

Distribution of Weight

In this example::

• Data: heart dataset.

• Aesthetic: y = weight defines the continuous variable.

• Geometric Object: geom_boxplot() draws a boxplot showing the median, quartiles,
and outliers.

• Labels: labs() adds a title and y-axis label.

• Theme: theme_minimal() simplifies the background for readability.

315

Interpretation

The majority of participants weigh between approximately 130 and 190 lbs, with a median
weight near 160 lbs. Multiple outliers above 220 lbs indicate a right-skewed distribution,
suggesting that a subset of participants weighs substantially more than the central range.

You can also use a grouped boxplot to compare weight across different blood pressure sta-
tuses:

Boxplot of a continuous variable grouped by a categorical variable
heart |>
ggplot(aes(x = bp_status, y = weight, fill = bp_status)) +
geom_boxplot(show.legend = FALSE) +
labs(

title = "Distribution of Weight by Blood Pressure Status",
x = "Blood Pressure Status",
y = "Weight (pounds)"

) +
theme_bw()

100

150

200

250

300

High Normal Optimal
Blood Pressure Status

W
ei

gh
t (

po
un

ds
)

Distribution of Weight by Blood Pressure Status

In this example:

• Data: heart dataset.

316

• Aesthetics:

– x = bp_status: Categorical grouping variable.

– y = weight: Continuous variable to analyze.

– fill = bp_status: Colours boxes by blood pressure status.

• Geometric Object: geom_boxplot() creates separate boxplots for each species.

• Labels: labs() clarifies the title and axes.

Interpretation

Based on the box plot, weight varies within each blood pressure status (High, Normal,
Optimal), as shown by the spread of each box and whiskers; however, the location of
these distributions are different, visually suggesting weight is not the same across all
blood pressure statuses, with ‘High’ status tending towards higher weights and ‘Optimal’
status towards lower weights.

Note

Consider using geom_violin() instead of geom_boxplot() when you wish to display the
full distribution of the data.

heart |>
ggplot(aes(x = bp_status, y = weight, fill = bp_status)) +
geom_violin(show.legend = FALSE) +
labs(
title = "Distribution of Weight by Blood Pressure Status",
x = "Blood Pressure Status",
y = "Weight (pounds)"

) +
theme_bw()

317

100

150

200

250

300

High Normal Optimal
Blood Pressure Status

W
ei

gh
t (

po
un

ds
)

Distribution of Weight by Blood Pressure Status

Violin plots not only summarise the quartiles and median but also reveal the density of
the data, highlighting features such as multimodality or skewness, which can offer deeper
insights into the underlying distribution.

7.8.6 Creating a Histogram

Suppose you want to plot the distribution of diamond carat sizes in the diamond dataset:

Create a histogram of carat values
diamonds |>
ggplot(aes(x = carat)) +
geom_histogram(

fill = "lightblue",
color = "darkblue"

) +
labs(

title = "Distribution of Diamond Carat Sizes",
x = "Weight of the diamond",
y = "Count"

) +
theme_minimal()

318

0

5000

10000

15000

0 1 2 3 4 5
Weight of the diamond

C
ou

nt
Distribution of Diamond Carat Sizes

In this example:

• Data: diamonds dataset.

• Aesthetic: x = carat maps the continuous carat values to the x-axis.

• Geometric Object:

– geom_histogram() bins the data and plots frequencies.

– fill and color customise bar appearance.

• Labels: labs() adds a title and axis labels.

• Theme: theme_minimal() simplifies the background.

Interpretation

The histogram reveals a right-skewed distribution, indicating that smaller carat sizes
(e.g., 0.2–1.0) are more common, while larger diamonds (e.g., >2.0 carats) are rare.
Peaks around common sizes (e.g., 0.3, 0.7 carats) reflect market preferences or production
trends.

319

Note

Adjust binwidth to balance detail and clarity. For example:

geom_histogram(
binwidth = 0.1,
fill = "lightblue",
color = "darkblue"

)

7.8.7 Creating Frequency Polygons

Frequency polygons are ideal for overlaying multiple distributions. For example, to compare
diamond price distributions by cut:

diamonds |>
ggplot(aes(x = price, colour = cut)) +
geom_freqpoly(binwidth = 500) +
labs(

title = "Price Distribution by Diamond Cut",
x = "Price (USD)",
y = "Count",
colour = "Diamond Cut"

) +
theme_minimal()

320

0

1000

2000

3000

4000

5000

0 5000 10000 15000 20000
Price (USD)

C
ou

nt

Diamond Cut

Fair

Good

Very Good

Premium

Ideal

Price Distribution by Diamond Cut

In this example::

• Data: diamonds dataset.

• Aesthetics:

– x = price: Maps price to the x-axis.

– colour = cut: Colours lines by diamond cut (Fair, Good, etc.).

• Geometric Object:

– geom_freqpoly(binwidth = 500) creates smoothed frequency lines.

• Labels: labs() clarifies axes and legend.

Interpretation

The frequency polygon highlights:

• Price trends: Higher cuts (e.g., Ideal, Premium) dominate mid-to-high price
ranges.

• Overlap: Lower-quality cuts (Fair, Good) cluster in lower price brackets.

• Granularity: binwidth = 500 balances noise and trend visibility.

321

Note

Use frequency polygons instead of stacked histograms when comparing subgroups—
overlaid lines reduce visual clutter and improve comparability.

7.8.8 Creating Bar Charts

There are two primary geoms for creating bar charts in ggplot2: geom_bar() and
geom_col().

7.8.8.1 Bar Charts with Observation Counts

To create a bar chart where each bar represents the count of observations in a category, use
the geom_bar() function. It automatically counts observations in each category and scales the
bar heights accordingly. For example, to visualise the distribution of carburetor counts in the
mtcars dataset:

mtcars |>
ggplot(aes(x = carb, fill = carb)) +
geom_bar() +
labs(

title = "Number of Cars by Carburetor Count",
x = "Number of Carburetors",
y = "Number of Cars"

) +
theme_minimal()

322

0.0

2.5

5.0

7.5

10.0

1 2 3 4 6 8
Number of Carburetors

N
um

be
r

of
 C

ar
s

carb

1

2

3

4

6

8

Number of Cars by Carburetor Count

In this example::

• Data: The mtcars dataset.

• Aesthetics: x = carb defines categories; fill = carb colors bars by carburetor count.

• Geometric Object: geom_bar() generates bars with heights proportional to counts.
show.legend = FALSE removes redundant legend.

• Labels: labs() adds descriptive titles and axis labels.

• Theme: theme_minimal() simplifies the background for readability.

7.8.8.2 Stacked and Clustered Bar Charts

Stacked bar charts are useful for showing subgroup distributions. For example, to visualise
engine type (vs) distribution across cylinder counts (cyl):

mtcars |> ggplot(aes(x = cyl, fill = vs)) +
geom_bar() +
labs(

title = "Engine Type Distribution by Cylinder Count",
x = "Number of Cylinders",
y = "Count of Cars",
fill = "Engine Type"

323

) +
scale_fill_discrete(labels = c("V-shaped", "Straight"))

0

5

10

4 6 8
Number of Cylinders

C
ou

nt
 o

f C
ar

s

Engine Type

V−shaped

Straight

Engine Type Distribution by Cylinder Count

In this example::

• Stacking: geom_bar() automatically stacks subgroups when a fill aesthetic is mapped
(here, vs).

• Labels: scale_fill_discrete() clarifies the engine types (“V-shaped” for 0, “Straight”
for 1).

Tip

Clustered bar charts enable direct comparison of subgroups across categories by placing
bars side-by-side. For example, to visualise engine type (vs) distributions across cylinder
counts (cyl) with grouped bars:

mtcars |> ggplot(aes(x = cyl, fill = vs)) +
geom_bar(position = position_dodge(preserve = "single")) +
labs(

title = "Engine Type Distribution by Cylinder Count (Clustered)",
x = "Number of Cylinders",
y = "Count of Cars",

324

fill = "Engine Type"
) +
scale_fill_discrete(labels = c("V-shaped", "Straight"))

0

5

10

4 6 8
Number of Cylinders

C
ou

nt
 o

f C
ar

s

Engine Type

V−shaped

Straight

Engine Type Distribution by Cylinder Count (Clustered)

In this example::

• Data: mtcars dataset.

• Aesthetics: x = cyl defines cylinder groups; fill = vs colours bars by engine type.

• Geometric Object: geom_bar(position = position_dodge(...)) groups bars side-
by-side instead of stacking.

– preserve = "single" ensures consistent bar widths even if some subgroups are
missing.

• Labels: scale_fill_discrete() clarifies engine type labels.

Note

Clustered bars make it easier to directly compare V-shaped vs. straight engines within
each cylinder group.

325

7.8.8.3 Bar Charts with Precomputed Values

When the bar heights represent explicit values in your dataset (rather than counts of observa-
tions), use geom_col(). This function requires both x and y aesthetics, where y corresponds
to precomputed values (e.g., sums, averages, or other aggregated metrics). For example, to
visualise the total carat weight of diamonds grouped by cut quality:

diamonds |>
ggplot(aes(x = cut, y = carat, fill = cut)) +
geom_col() +
labs(

x = "Quality of the Cut",
y = "Total Carat Weight"

) +
theme_bw()

0

5000

10000

15000

Fair Good Very Good Premium Ideal
Quality of the Cut

To
ta

l C
ar

at
 W

ei
gh

t cut

Fair

Good

Very Good

Premium

Ideal

In this example::

• Data: diamonds dataset (requires aggregation if carat is not pre-summarised).

• Aesthetics:

– x = cut: Categorises bars by diamond cut quality.

– y = carat: Uses raw carat values (summed automatically per group).

326

– fill = carat

• Geometric Object: geom_col() plots bars with heights proportional to y.

• Labels: labs() clarifies axis titles.

Interpretation:

This chart shows the total carat weight of diamonds per cut. For example, “Ideal” cuts have
a higher total carat weight because they are more prevalent in the dataset.

Data preparation

geom_col() assumes y values are precomputed. To plot group means, summarise data
first:

Precompute total carat weight for each cut
diamonds_summary <- diamonds |>
group_by(cut) |>
summarise(mean_carat = mean(carat))

Create the bar chart with labels
diamonds_summary |>
ggplot(aes(x = cut, y = mean_carat, fill = cut)) +
geom_col(show.legend = FALSE) + # Remove legend
labs(
title = "Average Carat Weight by Diamond Cut",
x = "Quality of the Cut",
y = "Average Carat Weight"

) +
theme_bw()

327

0.00

0.25

0.50

0.75

1.00

Fair Good Very Good Premium Ideal
Quality of the Cut

A
ve

ra
ge

 C
ar

at
 W

ei
gh

t
Average Carat Weight by Diamond Cut

For grouped comparisons with precomputed values, for example, comparing diamond carat
weights across cuts and subdividing by diamond colour:

diamonds |>
ggplot(aes(x = cut, y = carat, fill = color)) +
geom_col(position = position_dodge()) +
labs(

x = "Quality of the Cut",
y = "Total Carat Weight",
fill = "Diamond Colour"

) +
theme_bw()

328

0

1

2

3

4

5

Fair Good Very Good Premium Ideal
Quality of the Cut

To
ta

l C
ar

at
 W

ei
gh

t

Diamond Colour

D

E

F

G

H

I

J

In this example::

• Aesthetics:

– fill = color: Subdivides bars by diamond colour (D–J).

• Positioning:

– position_dodge() places bars side-by-side for direct subgroup comparison.

Interpretation:

The clustered bars reveal that carat weight distribution varies across diamond colour grades
(D–J) within each cut category. Higher-quality cuts such as “Ideal” and “Premium” correlate
with lighter colour grades (D–F), which contribute disproportionately to total carat weight,
while lower-quality cuts (“Fair”, “Good”) show a broader representation across mid-range
colours (G–J).

7.8.8.4 Bar Charts for Data Presented in a Table

Imagine you are a data analyst for a retail company that accepts multiple payment methods.
The following Table 7.1 shows the average transaction amount for each payment type:

329

Table 7.1: Average Transaction Amount by Payment Type

Payment Type Average Transaction
Check 46.861
Credit Card 36.681
Debit Card 28.860
Digital Wallet 18.900
Cash 4.802

To visualise this, you can create a column plot with geom_col():

Create a data frame with the payment data
payment_data <- data.frame(
payment_type = c("Check", "Credit Card", "Debit Card", "Digital Wallet", "Cash"),
avg_transaction = c(46.861, 36.681, 28.860, 18.900, 4.802)

)

payment_data |>
ggplot(aes(x = payment_type, y = avg_transaction, fill = payment_type)) +
geom_col(show.legend = FALSE) + # Remove legend
geom_text(

aes(label = avg_transaction), # Add bar labels
vjust = -0.5, # Position labels above bars
colour = "black"

) +
labs(

title = "Average Transaction Amount by Payment Type",
x = "Payment Type",
y = "Average Transaction Amount ($)"

) +
theme_minimal()

330

46.861

36.681

28.86

18.9

4.802

0

10

20

30

40

Cash Check Credit Card Debit Card Digital Wallet
Payment Type

A
ve

ra
ge

 T
ra

ns
ac

tio
n

A
m

ou
nt

 (
$)

Average Transaction Amount by Payment Type

In this example::

• Data: A custom data frame (payment_data) containing payment types and their corre-
sponding average transaction amounts.

• Aesthetics:

– x = payment_type: Categorises bars by payment method.

– y = avg_transaction: Uses precomputed average transaction values.

– fill = payment_type: Fills bars with different colours for each payment method.

• Geometric Object: geom_col() plots bars with heights proportional to the provided
average transaction values.

• Bar Labels:

– geom_text(aes(label = avg_transaction)): Adds average transaction values
above each bar.

– vjust = -0.5: Positions labels slightly above the bars.

– colour = "black": Ensures labels are visible against the bars.

• Labels: labs() provides a descriptive title and axis labels.

331

Interpretation

This chart clearly shows that customers using checks have the highest average transaction
amount, while cash transactions are the lowest—offering valuable insight into customer
spending habits.

Tip

Additional customisation options include adjusting label positioning with vjust or man-
ually setting bar colours using scale_fill_manual(). For example:

• Adjust vjust to fine-tune label positioning (e.g., vjust = 1.5 for labels inside
bars).

• Use scale_fill_manual() to assign specific colours to bars. For example:

payment_data |>
ggplot(aes(x = payment_type, y = avg_transaction, fill = payment_type)) +
geom_col(show.legend = FALSE) +
geom_text(
aes(label = avg_transaction),
vjust = -0.5,
colour = "black"

) +
labs(
title = "Average Transaction Amount by Payment Type",
x = "Payment Type",
y = "Average Transaction Amount ($)"

) +
Assign custom colours for each payment type
scale_fill_manual(values = c(
"Check" = "#E69F00",
"Credit Card" = "#56B4E9",
"Debit Card" = "#009E73",
"Digital Wallet" = "#F0E442",
"Cash" = "#0072B2"

)) +
theme_minimal()

332

46.861

36.681

28.86

18.9

4.802

0

10

20

30

40

Cash Check Credit Card Debit Card Digital Wallet
Payment Type

A
ve

ra
ge

 T
ra

ns
ac

tio
n

A
m

ou
nt

 (
$)

Average Transaction Amount by Payment Type

7.8.8.5 Faceting for Multi-Panel Plots

Faceting enables you to split data into subsets, displaying each in its own panel. For example,
the following code facets the barchat plot by gender in the heart data:

avg_age_death_by_smoking_sex <- heart |>
filter(!is.na(smoking_status)) |>
group_by(smoking_status, sex) |>
summarise(avg_age_at_death = mean(age_at_death, na.rm = TRUE))

#> `summarise()` has grouped output by 'smoking_status'. You can override using
#> the `.groups` argument.

avg_age_death_by_smoking_sex |> ggplot(aes(x = avg_age_at_death, y = smoking_status, fill = smoking_status)) +
geom_col(show.legend = FALSE) +
facet_wrap(~sex) +
labs(

title = "Smoking, Gender, and Lifespan: Comparing Average Age at Death",
x = "Age at Death",
y = "Smoking Status",

333

caption = "Data from Framingham Heart Study",
) +
theme_light()

Female Male

0 20 40 60 0 20 40 60

Non−smoker

Light (1−5)

Moderate (6−15)

Heavy (16−25)

Very Heavy (> 25)

Age at Death

S
m

ok
in

g
S

ta
tu

s

Smoking, Gender, and Lifespan: Comparing Average Age at Death

Data from Framingham Heart Study

Tip

This code creates a scatter plot for each unique value of gear, allowing for easy compar-
ison across groups.

To summarise, the key differences between geom_bar() and geom_col() are illustrated in the
following Table 7.2:

Table 7.2: Key Differences: geom_bar() vs. geom_col()

Function Use Case Aesthetics Required
geom_bar() Count observations per category x only
geom_col() Plot precomputed values per category x and y

7.8.9 Creating a Line Chart

Using the economics dataset, we can plot unemployment trends:

334

economics |>
ggplot(aes(x = date, y = unemploy)) +
geom_line(color = "blue") +
labs(

title = "Unemployment Trends Over Time",
x = "Date",
y = "Number of Unemployed Individuals"

) +
theme_bw()

4000

8000

12000

1970 1980 1990 2000 2010
Date

N
um

be
r

of
 U

ne
m

pl
oy

ed
 In

di
vi

du
al

s

Unemployment Trends Over Time

In this example:

• Data: US economic time series data.

• Aesthetics:

x = date: Maps time to the x-axis.

y = unemploy: Maps unemployment counts to the y-axis.

• Geometric Object:

– geom_area() fills the area under the line, emphasising cumulative magnitude.

– fill = "lightblue" sets the area colour.

335

• Labels: labs() adds a title and axis labels.

• Theme: theme_bw() applies a black-and-white theme for a clear, classic look.

Tip

This line chart displays the trend in unemployment over time, allowing us to observe how
the number of unemployed individuals changes across different periods.

7.8.10 Creating an Area Chart

Using the same economics data, create an area plot using the geom_area() function to display
the number of unemployed individuals over time.

economics |> ggplot(aes(x = date, y = unemploy)) +
geom_area(fill = "lightblue") +
theme_bw()

0

5000

10000

15000

1970 1980 1990 2000 2010
date

un
em

pl
oy

In this example:

• Data: economics dataset (US economic time series)

• Aesthetics:

336

• x = date: Maps time to the x-axis.

• y = unemploy: Maps unemployment counts to the y-axis.

• Geometric Object:

• geom_area() fills the area under the line, emphasising cumulative magnitude.

• fill = "lightblue" sets the area colour.

• Labels: None are explicitly added here, so the default axis labels (date and unemploy)
will be used.

• Theme: theme_bw() applies a clean black-and-white background.

Interpretation

The area chart not only illustrates long-term unemployment trends but also highlights
economic cycles—peaks during recessions and troughs during recovery periods.

You can further customise the chart by:

• Adjusting the alpha parameter to control area transparency (e.g., alpha = 0.5 for semi-
transparency).

• Overlaying geom_line() on geom_area() for dual emphasis:

economics |>
ggplot(aes(x = date, y = unemploy)) +
geom_area(fill = "lightblue", alpha = 0.3) +
geom_line(colour = "darkblue", linewidth = 0.5) + # Adds a trend line
theme_bw()

337

0

5000

10000

15000

1970 1980 1990 2000 2010
date

un
em

pl
oy

7.8.11 Saving Your Plots

Once you have created a visually appealing plot with ggplot2, you may wish to save it as an
image file for use in reports or presentations. The ggsave() function makes this simple:

diamonds |>
ggplot(aes(x = cut, y = carat, fill = color)) +
geom_col(position = position_dodge()) +
labs(x = "Quality of the cut", y = "Weight of the diamond") +
ggthemes::theme_economist()

338

0

1

2

3

4

5

Fair Good Very Good Premium Ideal
Quality of the cut

W
ei

gh
t o

f t
he

 d
ia

m
on

d
color

D

E

F

G

H

I

J

ggsave(filename = "diamonds-plot.png")

Tip

• filename = "diamonds-plot": Specifies the name and format of the output file.

• By default, ggsave() saves the most most recently created plot in your working
directory.

Customizing the Output:

For reproducible results and consistent dimensions, always adjust dimensions and resolution
to ensure your plot meets publication or presentation standards.

ggsave(
filename = "diamonds-plot.png",
width = 8, # Width in inches
height = 6, # Height in inches
units = "in", # Units for width and height (can be "in", "cm", or "mm")
dpi = 300 # Resolution in dots per inch

)

339

Tip

• width and height: Set the size of the image.

• units: Specify the units of measurement.

• dpi: Controls the resolution; 300 dpi is standard for high-quality images.

The ggsave() function lets you export your plots to formats such as PNG, PDF, or JPEG.
For more advanced options, consult the official documentation:

?ggsave

7.8.12 Practice Quiz 7.1

Question 1:

Which principle is the foundation of ggplot2’s structured approach to building graphs?

a) The Aesthetic Mapping Principle

b) The Facet Wrapping Technique

c) The Grammar of Graphics

d) The Scaling Transformation Theory

Question 2:

In a ggplot2 plot, which of the following best describes the role of aes()?

a) It specifies the dataset to be plotted.

b) It defines statistical transformations to apply to the data.

c) It maps data variables to visual properties, like colour or size.

d) It sets the coordinate system for the plot.

Question 3:

If you want to display the distribution of a single continuous variable and identify its modality
and skewness, which geom is most appropriate?

340

a) geom_point()

b) geom_bar()

c) geom_histogram()

d) geom_col()

Question 4:

When creating a boxplot to show the variation of a continuous variable across multiple cate-
gories, what do the “whiskers” typically represent?

a) The median value and the mean value.

b) The full range of the data, excluding outliers.

c) One standard deviation above and below the mean.

d) The maximum and minimum values after applying a 1.5 * IQR rule.

Question 5:

You have a dataset with a categorical variable Region and a continuous variable Sales. You
want to compare total sales across different regions. Which geom and aesthetic mapping would
be most appropriate?

a) geom_bar(aes(x = Region)), which internally counts the occurrences of each region.

b) geom_col(aes(x = Region, y = Sales)), which uses the actual Sales values for the
bar heights.

c) geom_line(aes(x = Region, y = Sales)), connecting points across regions.

d) geom_area(aes(x = Region, y = Sales)), to show cumulative totals over regions.

Question 6:

If you want to add a smoothing line (e.g., a regression line) to a scatter plot created with
geom_point(), which geom should you use and with what parameter to fit a linear model
without confidence intervals?

a) geom_smooth(method = "lm", se = FALSE)

b) geom_line(stat = "lm", se = TRUE)

341

c) geom_line(method = "regress", se = FALSE)

d) geom_smooth(method = "reg", confint = FALSE)

Question 7:

Consider you have a factor variable cyl representing the number of cylinders in the mtcars
dataset. If you want to create multiple plots (small multiples) for each value of cyl, which
ggplot2 function can you use?

a) facet_wrap(~ cyl)

b) facet_side(~ cyl)

c) group_by(cyl) followed by multiple geom_point() calls

d) geom_facet(cyl)

Question 8:

Which of the following statements about ggsave() is true?

a) ggsave() must be called before creating any plots for it to work correctly.

b) ggsave() saves the last plot displayed, and you can control the output format by
specifying the file extension.

c) ggsave() cannot control the width, height, or resolution of the output image.

d) ggsave() only saves plots as PDF files.

Question 9:

What is the purpose of setting group aesthetics in a ggplot, for example in a line plot?

a) To change the colour scale of all elements.

b) To ensure that discrete categories are grouped together for transformations like smooth-
ing.

c) To define which points belong to the same series, enabling lines to connect points within
groups instead of mixing data across categories.

d) To modify only the legend titles and labels.

342

Question 10:

When customizing themes, which of the following options is NOT directly controlled by a
theme() function in ggplot2?

a) Axis text size, angle, and colour.

b) Background grid lines and panel background.

c) The raw data values in the dataset.

d) The plot title alignment and style.

See the Solution to Quiz 7.1

7.8.13 Exercise 7.1.1: Data Analysis and Visualization with Medical Insurance
Data

For this exercise, you will use Rstudio Project, call it Experiment 7.1 and medical insurance
data. These questions and tasks will give you hands-on experience with the key functionalities
of dplyr and ggplot2, reinforcing your learning and understanding of both data manipulation
and visualization in R.

1. Data Manipulation using dplyr:

a. Locate the medical_insurance.xlsx file in the r-data directory. If you don’t already
have the file, you can download it from Google Drive.

b. Import the data into R.

c. How many individuals have purchased medical insurance? Use dplyr to filter and count.

d. What is the average estimated salary for males and females? Use group_by() and
summarise().

e. How many individuals in the age group 20-30 have not purchased medical insurance?
Use filter().

f. Which age group has the highest number of non-purchasers? Use group_by() and
summarise().

g. For each gender, find the mean, median, and maximum estimated salary. Use
group_by(), summarise and appropriate statistical functions.

2. Data Visualization using ggplot2:

a. Create a histogram of the ages of the individuals. Use geom_histogram().

343

https://docs.google.com/spreadsheets/d/1RPyZx6viNm-kDd4NKaINTG1wmO_02Bfr/edit?usp=drive_link&ouid=106220036497399452279&rtpof=true&sd=true

b. Plot a bar chart that shows the number of purchasers and non-purchasers. Use
geom_bar().

c. Create a boxplot to visualize the distribution of estimated salaries for males and females.
Use geom_boxplot().

d. Generate a scatter plot of age versus estimated salary. Color the points by their “Pur-
chased” status. This will give insights into the relationship between age, salary, and the
decision to purchase insurance. Use geom_point().

e. Overlay a density plot on the scatter plot created in (d) to better understand the con-
centration of data points. Use geom_density_2d().

3. Combining dplyr and ggplot2:

a. Filter the data to only include those who haven’t purchased insurance and then create
a histogram of their ages.

b. Group the data by gender and then plot the average estimated salary for each gender
using a bar chart.

c. For each age, calculate the percentage of individuals who have purchased insurance and
then plot this as a line graph against age.

7.8.14 Exercise 7.1.2: Reproducing the Smoking, Gender, and Lifespan Chart

In this exercise you will use the heart dataset from the Framingham Heart Study (located in
the r-data directory) to replicate a chart that compares the average age at death by smoking
status for both males and females.

344

The example chart is a horizontal bar chart, divided into two panels—one for each sex. In each
panel, individuals are grouped by their smoking intensity, which is classified into the following
categories: Non-smoker, Light (1–5), Moderate (6–15), Heavy (16–25), and Very Heavy (>25).
The x-axis shows the average age at death, and the data source is the Framingham Heart
Study.

1. Data Description

• The heart dataset contains cardiovascular health data from the Framingham Heart
Study, including variables such as sex, age_at_death, and smoking_status.

• The smoking status is classified into the following categories: Non-smoker, Light (1–5),
Moderate (6–15), Heavy (16–25), and Very Heavy (>25).

• Note that some variables (for example, smoking_status) may contain missing values.

2. Objective

• Filter the dataset to remove any rows with a missing smoking_status.

• Group the data by smoking_status and sex.

• Calculate the mean age_at_death for each group.

• Visualise the results using ggplot2 by creating a bar chart that:

– Displays the average age at death on the x-axis.
– Shows the smoking status on the y-axis.

345

– Uses faceting to create separate panels for females and males.
– Utilises colour/fill to differentiate between the smoking categories.
– Includes a clear title and appropriate labels for both axes.

3. Deliverables

• Provide a brief description of your approach (no code is required here, just an explanation
of your rationale).

• Produce a bar chart that closely replicates the example above, and save it as an image
file (PNG or PDF).

• Write a short summary of what the chart reveals about the relationship between smoking
status, sex, and average age at death.

Tip

To complete this exercise, you will need to use both dplyr (for data manipulation) and
ggplot2 (for visualisation). Focus on computing the mean of age_at_death for each
group defined by smoking_status and sex.

Good luck, and enjoy exploring the data!

See the Solution to Exercise 7.1.2

7.9 Experiment 7.2: Data Visualisation Using Base R Graphics

Data visualisation using Base R graphics offers a built-in, efficient approach that requires
no additional packages. Although ggplot2 offers extensive flexibility and elegance, Base R
graphics remain indispensable for quick and exploratory analyses, especially when producing
simple or preliminary plots.

Base R uses a function-based approach that gives you direct control over graphical elements.
Unlike ggplot2’s layered grammar, each plot type in Base R is created with a dedicated function,
making it ideal for rapid exploratory analysis or for producing simple static plots.

7.9.1 Advantages of Using Base R

Let us explore the key benefits that make Base R a practical choice for data analysis in R:

• No Dependencies: Base R plotting functions are part of the core R installation, so
there is no need for additional packages.

346

• Quick and Simple: These functions are ideal for exploratory data analysis or when a
fast visualisation is required.

• Full Control: You have direct access to low-level graphical parameters, allowing for
highly customised plots.

7.9.2 Core Plotting Functions

Base R provides a suite of primary functions that offer a straightforward and flexible method
to create and customise graphics. These include:

• plot(): a generic function for creating scatterplots, line graphs, and more.

• hist(): for displaying data distributions in the form of histograms.

• boxplot(): for creating box-and-whisker plots to summarise and compare data.

• barplot(): for generating bar charts of categorical data.

• pie(): for illustrating proportions using pie charts.

Tip

These functions form the backbone of many data visualisation tasks in Base R and can
be easily combined with customisations to enhance your analysis.

7.9.3 Customising Plots in Base R

A major strength of Base R plotting is its extensive customisation through built-in graphical
parameters. Unlike specialised libraries that employ layered functions and themes, customi-
sations in Base R are applied directly within plotting functions or via the par() function to
control global settings.

Some key graphical parameters include:

• Colour (col):
The col parameter sets colours for plot elements, including points, lines, bars, and text.
You can specify colours by name (e.g. "blue", "red"), numeric codes, or hexadecimal
codes ("#FF0000"). For instance, specifying col = "blue" in plot() sets points or lines
to blue. You may also supply a vector of colours to differentiate groups.

347

• Point Symbols (pch)
The pch parameter defines the style of points in scatterplots or line plots. It accepts nu-
merical codes (0–25), each corresponding to different symbols (circles, triangles, crosses,
etc.). For instance, pch = 19 creates solid circular points, which are often used for clarity.
Alternatively, character symbols (e.g., pch = "*") to add more stylistic customisation.

• Line Width and Type (lwd and lty)
The lwd parameter controls the thickness of lines (e.g., in line charts or regression lines),
with higher numeric values creating thicker lines. The default is typically 1, but you can
adjust this for visibility or emphasis. Meanwhile, lty controls line patterns—solid lines
(lty = 1), dashed (lty = 2), dotted (lty = 3), or combinations thereof (1 through 6).

• Scaling of Element Sizes (cex)
The cex parameter scales the size of plot elements such as points, labels, and text
annotations. A value greater than 1 increases element size for enhanced visibility, while
a value less than 1 reduces it, ensuring that plots remain readable in presentations or
printed reports.

• Axes and Text Labels (main, xlab, ylab)
Meaningful and clear labelling significantly improves plot readability. The parameters
include:

– main: Sets the main title at the top of the plot, summarising its purpose.

– xlab and ylab: Define the labels for the horizontal and vertical axes, providing
essential context for the numeric scales.

• Adjusting Margins and Layout (par())
For more extensive customisation, the par() function adjusts global graphical settings,
such as margins (mar), axis text orientation (las), font sizes (font), and layout arrange-
ments (mfrow). For example, setting par(mfrow = c(2, 2)) divides your graphical
device into a 2x2 grid, allowing multiple plots in a single output.

Note

Customising these parameters directly within Base R plotting functions offers precise
control over your visualisations, ensuring that your plots are both informative and aes-
thetically pleasing.

We will reproduce the visualisation examples from Experiment 7.1 to demonstrate how similar
plots can be constructed using R’s built-in graphics functions and to highlight the available
customisation options.

348

7.9.4 Creating a Scatter Plot with Base R

Using the mtcars dataset, we can visualise the relationship between engine displacement and
miles per gallon:

plot(mtcars$disp, mtcars$mpg, # X-Y plotting style for scatter plot
main = "Engine Displacement vs. Miles per Gallon",
xlab = "Displacement (cu.in.)",
ylab = "Miles per Gallon",
pch = 19, col = "darkblue"

)

100 200 300 400

10
15

20
25

30

Engine Displacement vs. Miles per Gallon

Displacement (cu.in.)

M
ile

s
pe

r
G

al
lo

n

Adding a Regression Line:

You can further enhance the scatter plot by adding a regression line:

Base scatter plot using a formula interface
plot(mpg ~ disp,
data = mtcars,
main = "Linear Regression of MPG on Displacement",
xlab = "Displacement (cu.in.)",
ylab = "Miles per Gallon",
pch = 19

349

)

Adding a linear regression line
abline(lm(mpg ~ disp, data = mtcars), col = "blue", lwd = 2)

100 200 300 400

10
15

20
25

30

Linear Regression of MPG on Displacement

Displacement (cu.in.)

M
ile

s
pe

r
G

al
lo

n

For a scatter plot that incorporates a categorical variable (e.g. cylinder) to distinguish
colours:

plot(mpg ~ disp,
col = cyl, data = mtcars, pch = 19,
main = "Displacement vs. MPG by Cylinder",
xlab = "Displacement (cu.in.)",
ylab = "Miles per Gallon"

)
legend("topright",
legend = unique(mtcars$cyl),
col = unique(mtcars$cyl), pch = 19, title = "Cylinders"

)

350

100 200 300 400

10
15

20
25

30

Displacement vs. MPG by Cylinder

Displacement (cu.in.)

M
ile

s
pe

r
G

al
lo

n

Cylinders

6
4
8

Tip

Experiment with different pch and col values to improve the clarity of your scatter plots,
especially when dealing with overlapping data points.

7.9.5 Creating Boxplots in Base R

Boxplots are invaluable for visualising the distribution of a variable. For instance, using the
heart dataset, we can examine the distribution of weight.

boxplot(heart$weight,
main = "Distribution of Weight",
ylab = "Weight (pounds)",
col = "lightblue"

)

351

10
0

20
0

30
0

Distribution of Weight
W

ei
gh

t (
po

un
ds

)

We can also visualise weight by blood pressure status:

boxplot(weight ~ bp_status,
data = heart,
col = c("#D73027", "#FEE08B", "#1A9850"),
main = "Distribution of Weight by Blood Pressure Status",
xlab = "Blood Pressure Status",
ylab = "Weight (pounds)"

)

352

High Normal Optimal

10
0

20
0

30
0

Distribution of Weight by Blood Pressure Status

Blood Pressure Status

W
ei

gh
t (

po
un

ds
)

Note

When comparing groups using boxplots, ensure that your grouping variable is appropri-
ately formatted (e.g. as a factor) for clear interpretation.

7.9.6 Creating a Histogram in Base R

To display the distribution of diamond carat sizes, we use the hist() function:

hist(diamonds$carat,
breaks = 30, col = "lightblue",
main = "Distribution of Diamond Carat Sizes",
xlab = "Carat",
ylab = "Frequency"

)

353

Distribution of Diamond Carat Sizes

Carat

F
re

qu
en

cy

0 1 2 3 4 5

0
40

00
10

00
0

Adjusting Bin-width

Base R utilises the breaks argument to control bin-width. For example, to use a bin-width of
0.5 carats, ensure the breaks span the entire range of your data:

hist(diamonds$carat,
breaks = seq(0, max(diamonds$carat) + 0.5, by = 0.5),
col = "lightblue",
xlab = "Carat Size",
main = "Histogram with Custom Bin Width (0.5 Carats)"

)

354

Histogram with Custom Bin Width (0.5 Carats)

Carat Size

F
re

qu
en

cy

0 1 2 3 4 5

0
50

00
15

00
0

Tip

Adjust the breaks argument to fine-tune the granularity of your histogram and capture
the nuances in your data distribution.

7.9.7 Creating Bar Charts in Base R

A simple bar chart can be created to display the number of cars by carburettor count:

barplot(table(mtcars$carb),
main = "Number of Cars by Carburetor Count",
xlab = "Number of Carburetors",
ylab = "Count",
col = "skyblue"

)

355

1 2 3 4 6 8

Number of Cars by Carburetor Count

Number of Carburetors

C
ou

nt

0
2

4
6

8
10

You can also add value labels above each bar to indicate the count:

Create a table of counts for each carburetor count
counts <- table(mtcars$carb)

Generate the bar plot and store the midpoints of the bars
bar_midpoints <- barplot(counts,
main = "Number of Cars by Carburetor Count",
ylim = c(0, 12),
xlab = "Number of Carburetors",
ylab = "Count",
col = "skyblue"

)

Add value labels above each bar
text(
x = bar_midpoints, y = counts,
labels = counts,
pos = 3, # Position text above the bar
cex = 0.8, # Adjust text size as needed
col = "black"

)

356

1 2 3 4 6 8

Number of Cars by Carburetor Count

Number of Carburetors

C
ou

nt

0
2

4
6

8
12

7

10

3

10

1 1

Tip

The ylim() parameter sets the lower and upper limits of the y-axis so that the value
labels are clearly visible, particularly for the bars representing 2 and 4 carburettors.

If desired, you can colour each bar differently by using a vector of colours. For example, you
might use terrain.colors(n) or rainbow(n), where n is the number of colours required:

bar_midpoints <- barplot(table(mtcars$carb),
main = "Number of Cars by Carburetor Count",
ylim = c(0, 12),
xlab = "Number of Carburetors",
ylab = "Count",
col = terrain.colors(6)

)
text(
x = bar_midpoints, y = table(mtcars$carb),
labels = table(mtcars$carb),
pos = 3, cex = 0.8, col = "black"

)

357

1 2 3 4 6 8

Number of Cars by Carburetor Count

Number of Carburetors

C
ou

nt

0
2

4
6

8
12

7

10

3

10

1 1

Grouped bar charts allow you to visualise relationships between two categorical variables. For
example:

counts <- table(mtcars$cyl, mtcars$vs)
barplot(counts,
beside = FALSE,
col = c("orange", "steelblue", "purple"),
legend = rownames(counts),
main = "Grouped Bar Chart by Cylinders and Engine Type",
xlab = "Engine Type",
ylab = "Count of Cars"

)

358

0 1

8
6
4

Grouped Bar Chart by Cylinders and Engine Type

Engine Type

C
ou

nt
 o

f C
ar

s

0
5

10
15

Tip

Set beside = TRUE to create a clustered bar chart, which makes it easier to compare
subgroups directly.

7.9.8 Creating Pie and Doughnut Charts in Base R

Using the payment method dataset presented earlier in Table 7.1, we can visualise the distri-
bution of average transaction amounts with a pie chart:

payments <- c(
Check = 46.861, CreditCard = 36.681, Debit = 28.860,
Digital = 18.9, Cash = 4.802

)

pie(payments,
main = "Average Transactions by Payment Type",
col = rainbow(length(payments))

)

359

Check

CreditCard

Debit

Digital

Cash

Average Transactions by Payment Type

Tip

ou can enhance the clarity of this visualisation by adding value labels to each sector of
the pie chart. This is done by specifying the labels argument; for instance, combining
each payment method’s name with its corresponding value creates informative labels for
each slice.

payments <- c(
Check = 46.861, CreditCard = 36.681, Debit = 28.860,
Digital = 18.9, Cash = 4.802

)
Create labels combining the payment method and its value
pie_labels <- paste(names(payments), round(payments, 1), sep = ": ")

pie(payments,
main = "Average Transactions by Payment Type",
col = rainbow(length(payments)),
labels = pie_labels

)

360

Check: 46.9

CreditCard: 36.7

Debit: 28.9

Digital: 18.9

Cash: 4.8

Average Transactions by Payment Type

Note

Doughnut charts are not directly supported by Base R graphics. However, you can create
them using custom functions or additional packages, such as plotrix.

7.9.9 Creating Line and Area Charts

Using the economics dataset, we can display unemployment trends over time with a line
chart:

plot(unemploy ~ date,
data = economics, type = "l",
main = "Unemployment Trends Over Time",
xlab = "Year",
ylab = "Unemployed",
col = "blue", lwd = 2

)

361

1970 1980 1990 2000 2010

40
00

10
00

0

Unemployment Trends Over Time

Year

U
ne

m
pl

oy
ed

To create an area chart, we fill the area beneath the line:

plot(unemploy ~ date,
data = economics, type = "l",
main = "Unemployment Trends Over Time",
xlab = "Year",
ylab = "Number of Unemployed Individuals",
col = "darkblue"

)

polygon(c(economics$date, rev(economics$date)),
c(economics$unemploy, rep(0, length(economics$unemploy))),
col = rgb(0.1, 0.1, 0.8, 0.3), border = NA

)

362

1970 1980 1990 2000 2010

40
00

10
00

0

Unemployment Trends Over Time

Year

N
um

be
r

of
 U

ne
m

pl
oy

ed
 In

di
vi

du
al

s

Tip

The polygon() function is a powerful tool for filling areas under curves, which can help
emphasise trends in your data.

7.9.10 Saving Plots

To save your Base R plots, wrap your plotting code with a graphics device function like png(),
jpeg(), or pdf(). For example:

png(filename = "scatterplot.png", width = 800, height = 600)

plot(mpg ~ disp,
data = mtcars,
main = "Linear Regression of MPG on Displacement",
xlab = "Displacement (cu.in.)",
ylab = "Miles per Gallon",
pch = 19

)

Adding a linear regression line
abline(lm(mpg ~ disp, data = mtcars), col = "blue", lwd = 2)

363

dev.off()

Caution

Always remember to close the graphics device with dev.off() to finalise the output file.

7.9.11 Practice Quiz 7.2

Question 1:

Which of the following is a key advantage of using Base R graphics for exploratory data
analysis?

a) They require additional packages.

b) They offer a quick, function-based approach with no dependencies

c) They utilise a layered grammar for complex plotting.

d) They automatically produce interactive visualisations.

Question 2:

Which function is the generic function in Base R for creating scatterplots, line graphs, and
other basic plots?

a) hist()

b) plot()

c) boxplot()

d) barplot()

Question 3:

Which function in Base R is specifically used to display data distributions as histograms?

a) pie()

b) plot()

364

c) hist()

d) boxplot()

Question 4:

What is the purpose of the breaks argument in the hist() function?

a) To set the colour of the bars.

b) To determine the bin width for the histogram

c) To label the axes.

d) To specify the main title.

Question 5:

Which graphical parameter in Base R is used to specify the colour of plot elements?

a) pch

b) lty

c) col

d) cex

Question 6:

The pch parameter in Base R plots is used to control:

a) The type of point symbol displayed

b) The line thickness.

c) The overall scaling of plot elements.

d) The arrangement of multiple plots.

Question 7:

Which function in Base R is used to adjust global graphical settings, such as margins and
layout arrangements?

a) plot()

365

b) par()

c) hist()

d) boxplot()

Question 8:

In a Base R scatter plot, which function is used to add a regression line?

a) lines()

b) abline()

c) curve()

d) segments()

Question 9:

What is one of the main reasons Base R graphics are considered advantageous over ggplot2
for certain tasks?

a) They require no additional packages since they are built into R

b) They offer more extensive theme options.

c) They are better suited for interactive visualisations.

d) They automatically manage data transformations.

Question 10:

When saving a Base R plot using the png() function, what is the purpose of calling dev.off()
afterwards?

a) To display the saved plot.

b) To open the saved file in a new window.

c) To close the graphics device and finalise the output file

d) To reset all graphical parameters.

See the Solution to Quiz 7.2

366

7.10 Reflective Summary

In Lab 7, you have acquired essential data visualisation skills that enable you to transform
raw data into compelling visual narratives:

• Building Complex Visualisations with ggplot2:
You learned how to harness the power of the Grammar of Graphics to create layered,
professional plots—from scatter plots to histograms and boxplots—that effectively com-
municate trends and patterns. You now understand how to map data variables to visual
properties, adjust themes, and add annotations.

• Quick and Efficient Plotting with Base R Graphics:
You explored R’s built-in plotting functions, such as plot(), hist(), boxplot(),
barplot(), and pie(), which are ideal for rapid exploratory analysis. Customisation
through graphical parameters like col, pch, lwd, lty, and cex enables you to fine-tune
your visualisations for clarity and impact.

• Customising Visual Elements for Clarity and Impact:
Mastering both ggplot2 and Base R graphics has equipped you to tailor visual elements—
such as colours, labels, scales, and themes—so your plots are not only informative but
also visually engaging.

• Integrating Data Manipulation and Visualisation:
You practiced combining data transformation techniques with visualisation tools to cre-
ate seamless analytical workflows, empowering you to extract meaningful insights from
complex datasets.

What’s Next?

In the next lab, we will delve into statistical fundamentals, where you will build on these
skills by exploring core statistical concepts, distinguishing between qualitative and quan-
titative data, understanding scales of measurement, and calculating descriptive statistics
to further empower your data analysis and interpretation.

367

Part III

Statistical Thinking

368

8 Statistical Concept

8.1 Introduction

Welcome to Lab 8, where we introduce the foundational principles of statistics and equip you
with the skills to analyse and interpret data effectively. These core concepts form the building
blocks of statistical reasoning, essential for summarising data, understanding variability, and
making informed decisions.

Statistics is the science of turning data into knowledge. It provides a structured approach to
discerning patterns, testing hypotheses, and drawing meaningful conclusions. Whether you
work in medicine, business, education, or any other field, statistical thinking is an invalu-
able skill—it helps you make sense of variability, measure uncertainty, and ultimately, make
decisions based on data.

Mastering statistical concepts goes beyond memorising formulas. It involves developing a
mindset that allows you to critically evaluate data and apply the appropriate methods to
answer questions and solve problems.

8.2 Learning Objectives

By the end of this lab, you will be able to:

• Understand the Core Concepts of Data Science
Recognise the fundamental principles of data science and how they are applied to extract
meaningful insights from raw data.

• Differentiate Between Types of Data
Identify and distinguish between qualitative and quantitative data, and understand their
relevance in statistical analysis.

• Perform Key Descriptive Statistical Analyses
Calculate and interpret measures of central tendency (mean, median, mode) and mea-
sures of variability (range, variance, standard deviation).

• Create Visual Representations of Data
Use R to produce visualisations such as boxplots and interpret the five-number summary
to communicate your findings effectively.

369

• Understand the Four Scales of Measurement
Apply nominal, ordinal, interval, and ratio scales to different types of data and select
appropriate statistical techniques for analysis.

By completing this lab, you will develop a strong foundation in statistical concepts, enabling
you to confidently approach more advanced topics in data analysis and data science.

8.3 What is Data?

Data is everywhere—it is embedded in nearly every aspect of modern life. Whether you are
recording the number of steps you take each day, capturing sales in a shop, or measuring
rainfall in a region, data is constantly being collected. Hospitals maintain clinical records,
teachers mark student attendance, and governments conduct censuses, all of which generate
valuable data.

Figure 8.1: Understanding Data: Key Elements and Their Connections

However, raw data on its own is meaningless. It consists of unprocessed facts—numbers, words,
images, or sounds. For example:

• A list of temperatures recorded each hour.

• The number of books borrowed from a library in a day.

• The names of students enrolled in a school.

When data is analysed and processed, it transforms into information—contextualised and
meaningful insights that help us make decisions.

370

8.3.1 Why is Data Important?

Data forms the foundation for decision-making. Organisations use data to:

• Evaluate progress.

• Solve problems.

• Identify trends.

• Make predictions about the future.

In today’s world, understanding data is not merely an advantage; it is a necessity. The ability
to collect, analyse, and interpret data is a critical skill in almost every profession.

8.3.2 Types of Data

Data can be broadly classified into qualitative and quantitative types, each with unique char-
acteristics and roles in analysis.

Figure 8.2: Classification of Data Types

8.3.2.1 Qualitative data

Qualitative data is descriptive, focusing on characteristics or categories rather than numerical
values. It answers questions such as “What kind?” or “Which type?”

Examples include:

• Gender: Male, Female

371

• Blood Type: A, B, AB, O

• Opinion: Agree, Neutral, Disagree

Key Features:

• Non-numerical: It is not measured in numbers.

• Categorical: It is organised into distinct groups or categories.

• Applications: Commonly used in surveys, classifications, and descriptive studies.

8.3.2.2 Quantitative data

Quantitative data is numerical and answers questions like “How much?” or “How many?”

Examples include:

• Age: 21 years

• Revenue: $10,000

• Distance: 5 kilometres

Key Features:

• Measurable: It can be counted or measured.

• Mathematical Operations: It is suitable for statistical and mathematical analysis.

Quantitative data is further divided into discrete and continuous.

1. Discrete data

Discrete data consists of distinct, countable values and cannot take fractional or decimal forms.
Essentially, if you’re counting something in whole numbers, you are dealing with discrete
data.

Key Features:

• Countable: Values are obtained by counting (e.g. 1, 2, 3, …).

• No Intermediate Values: There are no fractions or decimals between the values.

• Finite or Infinite: Although it can be finite, theoretically, it can continue indefinitely.

Examples include:

• The number of students in a classroom.

• The number of goals scored in a football match.

372

• The number of books on a shelf.

Practical Applications

Imagine you are surveying how many pets each household owns. The results—0, 1, 2
pets, etc.—are discrete because you are counting individual units. Discrete data is useful
for analysing totals, frequencies, and trends.

2. Continuous Data

Continuous data arises from measurement and can take on an infinite number of values within
a given range.

Key Features:

• Measurable: It is obtained by measuring (e.g. height, weight, time).

• Infinite Possibilities: It can assume any value within a range.

• Decimals and Fractions:: Values are not restricted to whole numbers.

Examples include::

• A person’s height: 160.5 cm, 172.8 cm.

• The weight of a package: 5.75 kg, 12.3 kg.

• Time taken to complete a task: 3.25 hours, 7.8 seconds.

Practical Applications

If you measure the rainfall over a month, each reading (e.g. 12.3 mm or 45.8 mm) is
continuous data, allowing for detailed analyses such as calculating averages, variances,
and trends over time.

Table 8.1 summarises the key differences between discrete and continuous data, helping you
choose the appropriate analytical methods.

Table 8.1: Comparison of Discrete and Continuous Data

Aspect Discrete Data Continuous Data
Nature Countable Measurable
Values Whole numbers only Can include fractions and

decimals
Range Finite or infinite, but distinct

steps
Infinite possibilities within a
range

373

Aspect Discrete Data Continuous Data
Examples Number of people, cars, or

items
Weight, height, time, or
temperature

Use in Statistics Frequency counts, categorical
trends

Averages, variances, and
precise analysis

Activity

Think of three examples of qualitative and quantitative data from your own life and jot
them down.

8.3.3 Sources of data

Data comes from two primary sources:

1. Primary Data
Collected first-hand for a specific purpose.

2. Secondary Data
Obtained from pre-existing sources such as reports, journals, or online databases.

Figure 8.3: Classification of Data Sources

8.3.3.1 Primary Data

Primary data is collected first-hand for a specific purpose. It is raw, original, and hasn’t been
processed. Examples include:

374

• Surveys

• Experiments

• Interviews

8.3.3.2 Secondary Data

Secondary data comes from pre-existing sources, such as reports, journals, or online databases.
This data has been processed or used for other purposes.

8.3.4 Practice Quiz 8.0

Question 1:

Data that focuses on characteristics or qualities rather than numbers is known as:

a) Quantitative data

b) Discrete data

c) Qualitative data

d) Continuous data

Question 2:

Which of the following is an example of discrete data?

a) The height of students in a class

b) The number of cars in a parking lot

c) The amount of rainfall in a day

d) The time taken to complete a task

Question 3:

Quantitative data that can take on any value within a given range is referred to as:

a) Categorical data

b) Nominal data

375

c) Discrete data

d) Continuous data

Question 4:

Qualitative data differs from quantitative data because qualitative data:

a) Can only be expressed with numbers

b) Has meaningful mathematical operations

c) Describes categories or groups

d) Is always collected from secondary sources

Question 5:

Primary data refers to data that:

a) Has been previously published by others

b) Comes directly from observation or experiment

c) Is always collected online

d) Is obtained only from government agencies

Question 6:

A list of colours observed in a garden (e.g., red, yellow, green) is an example of:

a) Quantitative continuous data

b) Quantitative discrete data

c) Qualitative data

d) Secondary data

Question 7:

Which of the following statements is true?

a) Data is always meaningful without analysis

376

b) Data, once processed, is known as information

c) Data and information are identical concepts

d) Information is just another term for data collection

Question 8:

A measurement like “23 people attended the seminar” is an example of:

a) Qualitative data

b) Continuous data

c) Discrete data

d) Nominal scale data

Question 9:

Data collected for the first time for a specific research purpose is known as:

a) Secondary data

b) Primary data

c) Nominal data

d) Discrete data

Question 10:

A researcher using census data from a national statistics bureau is working with:

a) Primary data

b) Secondary data

c) Continuous data

d) Nominal data

See the Solution to Quiz 8.0

377

8.4 Experiment 8.1: Statistical Thinking

Statistical thinking aligns your approach with the fundamental principles of statistics, enabling
you to make better decisions under uncertainty. Essentially, understanding statistics is vital
for making sound decisions in any field. By mastering basic statistical methods, you learn
when to apply the right tools to solve problems and think critically about data.

8.4.1 Population Data versus Sample Data

Population Data

A population is the complete set of elements under study. For example:

• All the heights of graduating students at Harvard University (USA)

• All the weights of adult women in Lagos (Nigeria)

• All the ages of students at the University of Oxford (UK)

• All the undergraduate students at the University of Cape Town (South Africa)

• All the countries in the European Union

If data is available for every element in the population, it is referred to as a census. However,
collecting data on an entire population is often impractical or too expensive, so we typically
rely on samples—manageable subsets that represent the whole.

Sample Data

A sample is a subset or fraction of the population. For example:

• 150 fish randomly sampled from the Amazon River (Brazil)

• 5 top-performing students selected from each Ivy League university (USA)

• 10 West African countries selected from all African nations

• 200 randomly chosen households from Lagos (Nigeria)

• 50 giraffes selected from the entire Serengeti population (Tanzania)

378

Figure 8.4: Population and Sample Illustration

8.4.2 Parameters and Statistics

Parameter

Parameters are characteristics of a population. They are descriptive measures for an entire
population and are typically denoted using Greek letters. For example, the population mean
is represented by 𝜇 (pronounced “mu”), the variance by 𝜎2 (sigma squared), the standard
deviation by 𝜎 (sigma), and the proportion by 𝑃 .

Statistic

Statistics are characteristics of a sample. They are descriptive measures for a sample and are
typically denoted using Roman letters. For example, the sample mean is represented by ̄𝑥, the
variance by 𝑠2, the standard deviation by 𝑠, and the proportion by 𝑝. These sample statistics
are used to estimate the unknown population parameters.

Figure 8.5: Relationship Between Population and Sample

379

8.4.3 Descriptive Statistics

Descriptive statistics summarise and present the key features of a dataset, enabling you to
understand its central tendency, variability, and the shape of its distribution. In this lab, you
will use R to calculate these measures.

8.4.3.1 Measures of Central Tendency

The most common measures of central tendency are the mean, median, and mode. They are
sometimes called measures of location or averages.

• Mean

The arithmetic mean, or simply the mean, is the sum of all elements divided by the number
of elements. The sample mean is denoted by ̄𝑥 and the population mean by 𝜇.

̄𝑥 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛
𝑛 and 𝜇 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑁

𝑁
Example 1: Calculating the Sample Mean

Consider the ages of a study group:

14, 25, 17, 21, 11, 17, 22, 25, 16, and 13.

The sample mean is calculated as follows:

̄𝑥 = 14 + 25 + 17 + 21 + 11 + 17 + 22 + 25 + 16 + 13
10 = 181

10 = 18.1

The sample mean age is 18.1 years.

Calculating the Mean in R

age <- c(14, 25, 17, 21, 11, 17, 22, 25, 16, 13)

mean(age)

#> [1] 18.1

380

Example 2:

Professor Francisca, the Vice-Chancellor of Thomas Adewumi University (Kwara, Nigeria) and
a Professor of Computer Science, is known for her generosity. Each week, she awards monetary
prizes (in dollars) to the best student in the weekly Computer Science assignment for the DTS
204 module. Below are the prize amounts she has given out:

495, 503, 503, 498, 503, 505, 503, 500, 501, 489, 498, 488, 499, 497, 508, 507, 507, 509, 508,
and 503.

Calculate the mean amount:

money <- c(
495, 503, 503, 498, 503, 505, 503, 500, 501, 489, 498, 488, 499,
497, 508, 507, 507, 509, 508, 503

)

mean(money)

#> [1] 501.2

The mean monetary prize is $501.2.

• Median

The median is the middle value when the data is arranged in ascending or descending order.

Note

When the number of observations is odd, the median is the single middle value; when
even, it is the average of the two middle values.

Example 1:

Consider the scores of thirteen students who registered for R for Data Science (CS 202):

7, 15, 10, 9, 18, 6, 21, 12, 16, 13, 5, 23, 2.

To determine the median, the data is first sorted in ascending order:

1 2 3 4 5 6 7 8 9 10 11 12 13
2 5 6 7 9 10 12 13 15 16 18 21 23

Since there are 13 observations (an odd number), the median is the 7th value, which is 12.

381

Calculating the median in R

The median can also be calculated programmatically using the median() function:

performance <- c(7, 15, 10, 9, 18, 6, 21, 12, 16, 13, 5, 23, 2)

median(performance)

#> [1] 12

Example 2:

Sixteen students registered for Introduction to Data Science (CS 212), and their scores are:

13, 18, 10, 9, 21, 13, 23, 23, 2, 2, 7, 21, 15, 18, 20, 7.

The median is calculated similarly in R:

performance <- c(13, 18, 10, 9, 21, 13, 23, 2, 23, 2, 7, 21, 15, 18, 20, 7)

median(performance)

#> [1] 14

• Mode

The mode is the value that occurs most frequently in a dataset. For example, consider Sophia,
a parent in Lagos, recording the number of steps her baby takes each day. The recorded data
is as follows:

0, 2, 6, 2, 2, 0, 0, 1, 1, 5, 3, 1, 0, 2, 3, 1, 2, 1, 4, 4, 5, 0, 5, 1, 2, 2, 2, 0, 4, 0, 6.

To gain insight into this data, one can first create a frequency table that shows how many
times each number of steps occurs:

Table 8.3: Frequency of Daily Baby Steps Recorded by Sophia

Number of calls Frequency
0 7
1 6
2 8
3 2
4 3
5 3

382

Number of calls Frequency
6 2

This table clearly shows that the value 2 occurs 8 times, which is more frequent than any other
number in the dataset. Therefore, the mode of the baby steps data is 2.

Calculating the mode in R

R does not have a built-in function for the mode of a numeric vector, but you can define a
custom function:

statistical_mode <- function(x) {
uniqx <- unique(x)
uniqx[which.max(tabulate(match(x, uniqx)))]

}

Explanation:

1. unique(x) creates a vector of the unique values in x.
2. match(x, uniqx) returns a vector of the positions of the elements of x in uniqx.
3. tabulate(match(x, uniqx)) counts the number of times each unique value ap-

pears in x.
4. which.max(...) finds the position of the maximum count.
5. uniqx[which.max(...)] returns the unique value corresponding to the maximum

count, i.e., the mode.

The statistical_mode() can be customized further for specific use cases (see Chap-
ter 3.5.1).

Applying this function to the baby steps data:

baby_steps <- c(
0, 2, 6, 2, 2, 0, 0, 1, 1, 5, 3, 1, 0, 2,
3, 1, 2, 1, 4, 4, 5, 0, 5, 1, 2, 2, 2,
0, 4, 0, 6

)

statistical_mode(baby_steps)

#> [1] 2

383

The function returns 2, confirming that the mode is 2.

To illustrate this further, you can visualise the frequency distribution with a bar chart:

Load necessary library
library(ggplot2)

Create a frequency table and convert it to a data frame
steps_frequency <- table(baby_steps)
steps_freq_df <- as.data.frame(steps_frequency)

colnames(steps_freq_df) <- c("Number_of_Steps", "Frequency")

Display the frequency table
steps_freq_df

#> Number_of_Steps Frequency
#> 1 0 7
#> 2 1 6
#> 3 2 8
#> 4 3 2
#> 5 4 3
#> 6 5 3
#> 7 6 2

Create a bar chart
steps_freq_df |> ggplot(aes(x = factor(Number_of_Steps), y = Frequency)) +
geom_bar(stat = "identity", fill = "coral", width = 0.4) +
theme_minimal() +
labs(

title = "Frequency of Daily Baby Steps Recorded by Sophia in December 2024",
x = "Number of Daily Baby Steps",
y = "Frequency"

) +
geom_text(aes(label = Frequency), vjust = -0.5)

384

7

6

8

2

3 3

2

0

2

4

6

8

0 1 2 3 4 5 6
Number of Daily Baby Steps

F
re

qu
en

cy
Frequency of Daily Baby Steps Recorded by Sophia in December 2024

Tip

This bar chart visually represents the distribution of daily baby steps, clearly showing
that 2 is the most frequently recorded number of daily steps.

Another example uses data from the United Nations, showing the regional distribution of
African countries. Africa has 54 countries grouped into five regions: East, Central, North,
Southern, and West Africa. Table 8.4 below shows the number of countries in each region:

Table 8.4: Regional Grouping of African Countries by Number of Nations

Regions Number of countries
East Africa 18
Central Africa 9
North Africa 6
South Africa 5
West Africa 16

From this table, we can see that East Africa has the largest number of countries (18).

385

8.4.3.2 Measures of Spread

Measures of spread (or dispersion) describe the variability in the data. Common measures
include range, standard deviation, variance, and mean absolute deviation.

• Range

The range is the difference between the highest and lowest values in a dataset. It is a simple
measure of spread.

For example, in the dataset 14, 25, 17, 21, 11, 17, 22, 25, 16, 13, the maximum value is 25 and
the minimum is 11, so the range is 25 − 11 = 14.
Calculating the Range in R

data <- c(14, 25, 17, 21, 11, 17, 22, 25, 16, 13)

max(data) - min(data)

#> [1] 14

You can also use the range() function to get both the minimum and maximum values:

range(data)

#> [1] 11 25

Warning

The range provides only a basic view of variability and can be misleading if there are
outliers.

• Variance and Standard Deviation

Variance is the average of the squared differences from the mean, indicating how far each value
in the dataset is from the mean.

𝜎2 = ∑(𝑥 − 𝜇)2

𝑁 and 𝑠2 = ∑(𝑥 − ̄𝑥)2

𝑛 − 1
where:

𝜎2 = Population variance

386

𝑠2 = Sample variance

∑ = sum of…

𝜇 = population mean

̄𝑥 = sample mean

𝑛 = sample size

𝑁 = population size

The standard deviation is the square root of the variance.

Tip

A small variance indicates that the data points are close to the mean, whereas a large
variance suggests that the data points are spread out.

For example, consider the heights (in cm) of six giraffes:

113, 146.5, 132, 70.5, 121, and 55.

Figure 8.6: Measuring Giraffe Heights

1. Calculate the Mean:

̄𝑥 = 113+146.5+132+70.5+121+55
6 ≈ 106.3 cm

2. Compute the Squared Differences from the Mean:

Table 8.5: Calculation of Squared Deviations from the Mean

𝑥 𝑥 − ̄𝑥 (𝑥 − ̄𝑥)2

113 113 - 106.3 = 6.7 44.89
146.5 146.5 - 106.3 = 40.2 1616.04

387

𝑥 𝑥 − ̄𝑥 (𝑥 − ̄𝑥)2

132 132 - 106.3 = 25.7 660.49
70.5 70.5 - 106.3 = -35.8 1281.64
121 121 - 106.3 = 14.7 216.09
55 55 - 106.3 = -51.3 2631.69
Total 0 6450.84

The sum of the squared differences is 6450.84.

3. Sample Variance:

𝑠2 = 6450.84
5 = 1290.17 cm2

4. Standard Deviation:

𝑠 =
√

1290.17 ≈ 35.93 cm

Calculating Variance in R

heights <- c(113, 146.5, 132, 70.5, 121, 55)

var(heights)

#> [1] 1290.167

sd(heights)

#> [1] 35.91889

Note

Variance is expressed in square units (e.g., cm²), while the standard deviation is expressed
in the original units (e.g., cm), making it easier to interpret.

388

8.4.3.3 Measures of Partition

Measures of partition divide a distribution into specified equal parts. The most common
measures of partition are quartiles and percentiles.

• Quartile

Quartiles split the data into four equal parts:

• Q1 (lower quartile)

• Q2 (median)

• Q3 (upper quartile)

• Q4 (which is always the maximum value)

For a dataset with 𝑛 items arranged in ascending order:

• 𝑄1 is the value at the 𝑛+1
4 position .

• 𝑄2 is the value at 𝑛+1
2 position (the median)

• 𝑄3 is the value at 3 (𝑛+1
4)

Interquartile Range (IQR):

The IQR is the difference between Q3 and Q1: $ IQR = Q3 - Q1 $

For example, thirteen learners took a quiz in Introduction to Statistical Thinking, and their
marks are:

10, 15, 10, 9, 18, 16, 14, 12, 16, 13, 15, 20, 17.

Sorted in ascending order:

1 2 3 4 5 6 7 8 9 10 11 12 13
9 10 10 12 13 14 15 15 16 16 17 18 20

• 𝑄1 is at the (13+1
4) = 3.5th position, so:

𝑄1 = 10+12
2 = 11

• 𝑄3 is at the 3 (13+1
4) = 10.5th position, so:

𝑄3 = 16+17
2 = 16.5

• Interquartile Range (IQR):

IQR = 𝑄3 − 𝑄1 = 16.5 − 11 = 5.5

389

Calculating the Quartiles in R

You can compute quartiles using quantile() function:

quantile(x, na.rm = FALSE)

Where:

• x: The numeric vector

• na.rm: Logical value indicating whether to remove NA values before calculation

marks <- c(10, 15, 10, 9, 18, 16, 14, 12, 16, 13, 15, 20, 17)

quantile(marks)

#> 0% 25% 50% 75% 100%
#> 9 12 15 16 20

This returns:

• 0% (Minimum): 9

• 25% (Q1): 12

• 50% (Median, Q2): 15

• 75% (Q3): 16

• 100% (Maximum): 20

You can also calculate the IQR using::

IQR(marks)

#> [1] 4

Which gives 16 − 12 = 4

• Percentiles

Percentiles divide the data into 100 equal parts, indicating the percentage of scores that lie
below a particular value. For example, if you are the fourth-tallest person in a group of 20,
you are at the 80th percentile because 80% of the group is shorter than you.

390

Note

Quartiles are specific percentiles:

• 𝑄1 = 25th percentile

• 𝑄2 = 50th percentile (median)

• 𝑄3 = 75th percentile

Figure 8.7: Distribution with Quartiles and Percentiles

Calculating Percentiles in R

Use the quantile() function with the probs argument:

quantile(x, probs, na.rm = FALSE)

Where:

• x: The numeric vector

• probs: Numeric vector of probabilities (between 0 and 1), indicating the desired per-
centiles (e.g., 0.25 = 25th percentile, 0.5 = 50th percentile, 0.75 = 75th percentile)

• na.rm: Logical value indicating whether to remove NA values before calculation

391

For example, suppose you have egg weights (in grams):

59, 56, 61, 68, 52, 53, 69, 54, 57, 51.

To find the 25th, 50th, and 75th percentiles:

egg_weights <- c(59, 56, 61, 68, 52, 53, 69, 54, 57, 51)

Calculate the 25th, 50th, and 75th percentiles
quantile(egg_weights, probs = c(0.25, 0.5, 0.75))

#> 25% 50% 75%
#> 53.25 56.50 60.50

This shows:

• 25th Percentile (P25): 53.25 grams
(25% of the egg weights are below 53.25 grams.)

• 50th Percentile (P50 or Median): 57.50 grams
(50% of the egg weights are below 57.50 grams.)

• 75th Percentile (P75): 63.25 grams
(75% of the egg weights are below 63.25 grams.)

8.4.4 Practice Quiz 8.1

Question 1:

A complete set of elements (people, items) that we are interested in studying is called a:

a) Sample

b) Population

c) Parameter

d) Statistic

Question 2:

A subset of a population used to make inferences about the population is called a:

a) Population

392

b) Sample

c) Statistic

d) Parameter

Question 3:

A value that describes a characteristic of an entire population (e.g., population mean) is known
as a:

a) Statistic

b) Parameter

c) Variable

d) Sample estimate

Question 4:

A value computed from sample data (e.g., sample mean) that is used to estimate a population
parameter is called a:

a) Parameter

b) Statistic

c) Variable

d) Census

Question 5:

Why do we often rely on samples rather than studying entire populations?

a) It is always more accurate.

b) Populations do not have parameters.

c) Sampling is often more feasible, less costly, and time-efficient

d) Populations are always small and uninteresting.

Question 6:

Statistical thinking involves understanding how to:

393

a) Manipulate data without purpose

b) Draw meaningful conclusions from data under uncertainty

c) Avoid using data in decision-making

d) Ignore variability in data

Question 7:

If a population parameter is 𝜇, the corresponding sample statistic used to estimate it is typi-
cally:

a) s

b) 𝜎

c) ̄𝑥

d) p

Question 8:

When we attempt to understand the variability in data and the uncertainty in our conclusions,
we are engaging in:

a) Statistical thinking

b) Non-statistical reasoning

c) Data neglect

d) Parameter ignorance

Question 9:

If it’s too expensive or impractical to study an entire population, we often conduct a:

a) Census

b) Biased survey

c) Sample study

d) Parameter test

394

Question 10:

The process of using sample data to make conclusions about a larger population is known as:

a) Data summarisation

b) Descriptive statistics

c) Statistical inference

d) Variable classification

See the Solution to Quiz 8.1

8.4.5 Exercise 8.1.2: Professor Francisca - A Generous Giver

Professor Francisca, the Vice-Chancellor of Thomas Adewumi University, Kwara, Nigeria, and
a Professor of Computer Science, is known for her generosity. Each week, she awards monetary
prizes in dollars to the best student in the weekly Computer Science assignment for the DTS
204 module. The prize amounts are as follows:

495, 503, 503, 498, 503, 505, 503, 500, 501, 489, 498, 488, 499, 497, 508, 507, 507, 509, 508,
and 503.

Using R, complete the following tasks to analyse the data:

Task 1: Central Tendency

1. Calculate the Mean:
Determine the average amount of money awarded.

2. Calculate the Median:
Find the median prize amount. Compare the median to the mean and discuss any
significant differences.

3. Determine the Mode:
Identify the most frequently occurring amount. Is there more than one mode? What
does this indicate about the distribution?

Task 2: Measure of Spread

1. Calculate the Range
Find the range of the amounts. What does this tell you about the variability?

2. Determine the Standard Deviation
Calculate the standard deviation. How does this help in understanding the consistency
of the prize amounts?

395

3. Find the Variance
Compute the variance. Explain how variance relates to standard deviation.

Task 3: Measure of Partition

1. Calculate the Interquartile Range (IQR)
Determine the IQR, which measures the spread of the middle 50% of the amounts. Com-
pare the IQR to the overall range and discuss what this reveals about variability.

2. Find the Quartiles
Identify Q1, the median (Q2), and Q3. Discuss what these quartiles reveal about the
distribution.

3. Calculate Percentile Ranks
Determine the percentile ranks for the minimum, maximum, and a selected amount
(e.g., $503). Interpret what these percentiles indicate about their position within the
distribution.

See the Solution to Exercise 8.1.2

8.5 Experiment 8.2: Five Number Summary and Boxplots

The five-number summary provides a comprehensive overview of a dataset by highlighting five
key values:

• Minimum: The smallest observation.

• First Quartile (Q1): The lower quartile.

• Median: The middle value.

• Third Quartile (Q3): The upper quartile.

• Maximum: The largest observation.

These statistics can be visualised using a box plot, which illustrates the distribution of the
data and identifies outliers. For an overview of box plots in ggplot2, refer to Chapter 7.8.5;
for base plots, see Chapter 7.9.5.

396

Figure 8.8: Building a Box and Whisker Plot

Consider a dataset of egg weights (in grams): 59, 56, 61, 68, 52, 53, 69, 54, 57, 51. You can
visualise this data using the boxplot() function in Base R:

eggs <- c(59, 56, 61, 68, 52, 53, 69, 54, 57, 51)

boxplot(eggs,
main = "A Boxplot Showing the Distribution of Egg Weight",
ylab = "Egg Weight (grams)",
col = "skyblue"

)

397

55
60

65

A Boxplot Showing the Distribution of Egg Weight
E

gg
 W

ei
gh

t (
gr

am
s)

Note

This code produces a simple box-and-whisker plot of the egg weights, enabling you to
quickly assess the central tendency, spread, and potential outliers.

Another application is analysing life expectancy data across African countries. Data for
life expectancy in 54 African countries in 2023, collected by UNICEF, is available in the
africa-life-expectancy.csv file in the r-data directory (or can be downloaded from Google
Drive.

To begin, import the necessary packages and data:

library(tidyverse)
library(janitor)

Importing the data
life_expectancy <- read_csv("r-data/africa-life-expectancy.csv")

Cleaning variable names
life_expectancy <- life_expectancy |> clean_names()

Viewing the data
life_expectancy

398

https://data.unicef.org/how-many/what-is-the-average-life-expectancy-in-africa/
https://drive.google.com/file/d/1IeymcdE6rcifLcauhvxCjZiu4jup22un/view?usp=drive_link
https://drive.google.com/file/d/1IeymcdE6rcifLcauhvxCjZiu4jup22un/view?usp=drive_link

#> # A tibble: 54 x 2
#> country life_expectancy_in_years_2023
#> <chr> <dbl>
#> 1 Angola 64.6
#> 2 Burundi 63.7
#> 3 Benin 60.8
#> 4 Burkina Faso 61.1
#> 5 Botswana 69.2
#> 6 Central African Republic 57.4
#> 7 Cote d'Ivoire 61.9
#> 8 Cameroon 63.7
#> 9 Democratic Republic of the Congo 61.9
#> 10 Congo 65.8
#> # i 44 more rows

If you are from Nigeria, you can filter the data to view Nigeria’s life expectancy:

life_expectancy |> filter(country == "Nigeria") # Replace "Nigeria" with another country if needed

#> # A tibble: 1 x 2
#> country life_expectancy_in_years_2023
#> <chr> <dbl>
#> 1 Nigeria 54.5

The life expectancy in Nigeria is 54.5.

In this dataset, you can obtain the five-number summary from the variable “Life Expectancy
in Years (2023)” using the summary() function:

life_expectancy |>
select(life_expectancy_in_years_2023) |>
summary()

#> life_expectancy_in_years_2023
#> Min. :54.46
#> 1st Qu.:62.00
#> Median :65.64
#> Mean :65.42
#> 3rd Qu.:68.32
#> Max. :76.51

399

Alternatively, you can use the base R summary() function directly:

summary(life_expectancy$life_expectancy_in_years_2023)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 54.46 62.00 65.64 65.42 68.32 76.51

The summary reveals:

• Minimum: 54.46 years

• First Quartile (Q1): 62.00 years

• Median: 65.64 years

• Third Quartile (Q3): 68.32 years

• Maximum: 76.51 years

The Interquartile Range (IQR) is calculated as:

IQR = 𝑄3 − 𝑄1 = 68.32 − 62.00 = 6.32 years

This can be verified in R:

IQR(life_expectancy$life_expectancy_in_years_2023)

#> [1] 6.317

To visualise the distribution of life expectancy across African countries, create a box plot using
ggplot2:

life_expectancy %>%
ggplot(aes(x = "", y = life_expectancy_in_years_2023)) +
geom_boxplot(fill = "skyblue", color = "darkblue") +
theme_minimal() +
labs(

title = "Distribution of Life Expectancy in African Countries (2023)",
x = NULL,
y = "Life Expectancy (Years)",
caption = "Data Source: UNICEF"

)

400

55

60

65

70

75

Li
fe

 E
xp

ec
ta

nc
y

(Y
ea

rs
)

Distribution of Life Expectancy in African Countries (2023)

Data Source: UNICEF

The box plot shows a median life expectancy of roughly 65 years, with the central 50% of
observations (from Q1 to Q3) spanning approximately 62 to 68 years. The whiskers extend
from around 55 years to nearly 77 years, indicating the minimum and maximum values. No-
tably, there are no extreme outliers, suggesting that most African countries cluster around a
life expectancy in the mid-60s.

8.5.1 Practice Quiz 8.2

Question 1:

Which set of values is included in a five-number summary?

a) Mean, Median, Mode, IQR, Standard Deviation

b) Minimum, Q1, Median, Q3, Maximum

c) Minimum, Mean, Mode, Maximum, Range

d) Q1, Q2, Q3, Q4, Q5

Question 2:

The interquartile range (IQR) is calculated as:

401

a) Q2 - Q1

b) Q3 - Median

c) Q3 - Q1

d) Median - Minimum

Question 3:

A boxplot is useful for:

a) Displaying frequencies of categorical data

b) Showing the distribution and identifying outliers

c) Calculating correlations between variables

d) Displaying only the mean value

Question 4:

Which value in a five-number summary represents the median of the entire dataset?

a) Q1

b) Q2 (Median)

c) Q3

d) Minimum

Question 5:

If a dataset has many outliers, a boxplot can help by:

a) Ignoring them completely

b) Highlighting them as points beyond the whiskers

c) Removing them automatically

d) Converting them to the mean value

Question 6:

The IQR focuses on the middle 50% of data, making it a good measure of:

402

a) Central tendency

b) Spread that is not influenced by extreme values

c) Correlation

d) Nominal categories

Question 7:

In R, the boxplot() function by default displays:

a) A histogram

b) A correlation matrix

c) A five-number summary depiction

d) A scatter plot

Question 8:

The difference between the maximum and minimum values in a dataset is called the:

a) Standard deviation

b) IQR

c) Range

d) Variance

Question 9:

A box-and-whisker plot typically does NOT show:

a) Median

b) Outliers

c) Mean

d) Interquartile range

403

Question 10:

When comparing two datasets using boxplots placed side by side, you can quickly assess
differences in:

a) Central tendency and spread

b) Exact individual data points

c) Correlation coefficients

d) Detailed frequency distributions

See the Solution to Quiz 8.2

8.5.2 Exercise 8.2.1

Thirty farmers were surveyed about the number of farm workers they employ during a typical
harvest season in Igboho, Oyo State, Nigeria. Their responses are:

4, 5, 6, 5, 1, 2, 8, 0, 4, 6, 7, 8, 4, 6, 7, 9, 8, 6, 7, 5, 5, 4, 2, 1, 9, 3, 3, 4, 6, 4.

Task 1:

Calculate the mean, median, and mode of the number of farm workers.

farm_workers <- c(
4, 5, 6, 5, 1, 2, 8, 0, 4, 6, 7, 8, 4, 6, 7, 9,
8, 6, 7, 5, 5, 4, 2, 1, 9, 3, 3, 4, 6, 4

)

Code for calculating the mean
...(farm_workers)

Code for calculating the median
...(farm_workers)

Code for calculating the mode (using a custom function, e.g., statistical_mode()):
...(farm_workers) # Code for calculating the mode

Task 2:

Determine the range and standard deviation of the distribution.

404

Put your implementation code in Python here

range(...) # Code for calculating the range

...(farm_workers) # Code for calculating the standard deviation

Task 3:

Create a box-and-whisker plot of the distribution.

...(farm_workers) # Code for creating the boxplot

Instructions:

Replace the ... with the correct R functions and complete the exercise!

See the Solution to Exercise 8.2.1

8.6 Experiment 8.3: Scales of Measurement

Scales of measurement are foundational concepts in statistics and social sciences, as they
determine how data is categorised, interpreted, and analysed. Each scale captures a different
level of detail and influences the statistical techniques you use. The four scales—nominal,
ordinal, interval, and ratio—form a hierarchy, with each subsequent scale offering more detailed
information.

8.6.1 Nominal Scale

The nominal scale is the most basic level, categorising data into distinct groups without any
inherent order. Essentially, it is used for “naming” data.

Key Features:

• Categories: Data is divided into groups or classes..

• No Order: There is no logical sequence.

• Statistics: Analysis is typically limited to frequency counts and mode.

Examples:

• Gender: Male, Female

• Blood Type: A, B, AB, O

405

• Ethnicity: Asian, African, European, Latin American

• Marital Status: Single, Married, Divorced, Widowed

Note

In social sciences, nominal data often arises in demographic variables or when categorising
types of behaviour.

How to Analyse Nominal Data:

• Use a frequency table to summarise occurrences.

• Visualise with a bar chart or pie chart.

• Perform a Chi-square test to examine relationships between nominal variables.

8.6.2 Ordinal Scale

The ordinal scale introduces a sense of order or rank, although the intervals between ranks are
not necessarily equal.

Key Features:

• Order: Data can be ranked or ordered.

• Unequal Intervals: Differences between ranks are not quantifiable.

• Statistics: Median and mode are appropriate, but the mean is not.

Examples:

• Socioeconomic Status: Low, Medium, High

• Customer Satisfaction: Very Unsatisfied, Unsatisfied, Neutral, Satisfied, Very Satisfied

• Political Ideology: Left-wing, Centre-left, Centre, Centre-right, Right-wing

• Therapy Effectiveness Ratings: Effective, Somewhat Effective, Not Effective

• Severity of an Issue: Minor, Moderate, Severe

Note

Ordinal data is common in surveys and questionnaires where responses are ranked, but
the intervals between them are not equal.

How to Analyse Ordinal Data:

406

• Use the median or rank the data.

• Apply non-parametric tests like the Mann-Whitney U test or Kruskal-Wallis test for
comparisons.

• Visualise with an ordered bar chart.

8.6.3 Interval Scale

The interval scale applies to numerical data with equal intervals between values, though it
lacks a true zero point.

Key Features:

• Equal Intervals: The difference between values is consistent.

• No True Zero: Zero is arbitrary; thus, ratios are not meaningful.

• Statistics: Suitable for calculating the mean, median, and standard deviation.

Examples:

• Temperature (Celsius or Fahrenheit)

• Test Scores (e.g., IQ scores)

• Intelligence Quotient (IQ): A score of 0 does not mean “no intelligence”.

• Personality Test Scores: Scales measuring extraversion or agreeableness.

• Psychological Inventories: Depression scale scores, anxiety scale scores.

Note

Interval scales are used in assessments where the distance between scores is meaningful,
but ratios (e.g., “twice as much”) are not.

How to Analyse Interval Data:

• Calculate the mean, variance, and standard deviation.

• Use parametric tests like the t-test or ANOVA.

• Visualise with a histogram or boxplot.

407

8.6.4 Ratio Scale

The ratio scale is the highest level of measurement. It incorporates all the properties of the
interval scale and includes an absolute zero, which allows for the calculation of meaningful
ratios.

Key Features:

• Absolute Zero: Zero indicates the absence of the quantity.

• Equal Intervals: Differences between values are consistent.

• Statistics: All statistical operations (including geometric mean) can be applied.

Examples:

• Weight (kilograms or pounds)

• Height (centimeters or inches)

• Reaction Time (seconds)

• Memory Recall (number of items)

• Physiological Measures (heart rate, cortisol levels)

Tip

Ratio scales are particularly relevant in the social sciences when dealing with measurable
quantities that have a true zero point.

How to Analyse Ratio Data:

• Perform any statistical operation: mean, median, mode, variance, and so on.

• Use parametric tests for advanced analysis.

• Visualise with scatter plots, histogams, or line graphs.

Recognising Scales in Practice

When working with data, ask yourself:

1. Is the data categorical or numerical?

2. If categorical, does it have an inherent order (ordinal) or not (nominal)?

3. If numerical, does it have a true zero (ratio) or is zero arbitrary (interval)?

Understanding these distinctions will guide your choice of statistical methods.

408

Table 8.7 summarises which measures can be applied to each scale:

Table 8.7: Scale of Measurement and Measures of Central Tendency

Measure Nominal Ordinal Interval Ratio
Sequence established – Yes Yes Yes
Mode Yes Yes Yes Yes
Median – Yes Yes Yes
Mean – – Yes Yes
Difference between values – – Yes Yes
Addition and subtraction – – Yes Yes
Multiplication and division – – – Yes
Absolute zero – – – Yes

8.6.5 Practice Quiz 8.3

Question 1:

A scale that categorises data without any order is known as:

a) Nominal

b) Ordinal

c) Interval

d) Ratio

Question 2:

Which scale provides both order and equal intervals but no true zero point?

a) Nominal

b) Ordinal

c) Interval

d) Ratio

Question 3:

Which scale allows for meaningful ratios and has a true zero?

409

a) Nominal

b) Ordinal

c) Interval

d) Ratio

Question 4:

Educational levels ranked as “Primary, Secondary, Tertiary” represent which scale?

a) Nominal

b) Ordinal

c) Interval

d) Ratio

Question 5:

Temperatures in Celsius or Fahrenheit are examples of which scale?

a) Nominal

b) Ordinal

c) Interval

d) Ratio

Question 6:

Blood types (A, B, AB, O) are measured on which scale?

a) Nominal

b) Ordinal

c) Interval

d) Ratio

Question 7:

The number of items sold in a store (e.g., 0, 5, 10 units) is best described by which scale?

410

a) Nominal

b) Ordinal

c) Ratio

d) Interval

Question 8:

Customer satisfaction ratings (e.g., Satisfied, Neutral, Unsatisfied) belong to which scale?

a) Nominal

b) Ordinal

c) Interval

d) Ratio

Question 9:

A key difference between interval and ratio scales is that ratio scales have:

a) Categories only

b) A meaningful zero point

c) No ordering capability

d) Equal intervals that are meaningless

Question 10:

IQ scores are often treated as which type of scale?

a) Nominal

b) Ordinal

c) Interval

d) Ratio

See the Solution to Quiz 8.3

411

8.6.6 Exercise 8.3.1: Identify the Scale

Now it’s your turn to practice. For each example below, identify the correct scale of measure-
ment:

• Blood pressure readings (e.g., 120 mmHg, 130 mmHg)

• The type of car owned (e.g., Sedan, SUV, Truck)

• Rankings in a cooking competition (e.g., 1st, 2nd, 3rd)

• Test scores out of 100 (e.g., 85, 90, 75)

• Age of students in years

See the Solution to Exercise 8.3.1

8.7 Reflective Summary

In this lab, you have gained knowledge and skills in statistical thinking:

• Concepts of Statistics: You learned the foundational principles of statistics and how
they are applied to extract valuable insights from raw data. Understanding these princi-
ples is crucial for interpreting data meaningfully.

• Types of Data: You explored the differences between qualitative and quantitative data,
recognising their significance in statistical analysis. You also learned how to categorise
data for appropriate analysis.

• Scales of Measurement: You discovered the four scales of measurement—nominal,
ordinal, interval, and ratio—and how to apply them to different data types, ensuring
that you use the correct statistical techniques for each.

• Descriptive Statistical Analysis: You learned how to calculate and interpret key
measures of central tendency (mean, median, mode) and measures of spread (range,
variance, standard deviation), essential for summarising and understanding datasets.

• Visualising Data: You practised creating boxplots in R and interpreting the five-
number summary to visually communicate key insights from your data.

These skills provide a solid base for further exploration in statistical analysis and data sci-
ence, enabling you to interpret and apply statistical methods to real-world problems with
confidence.

412

What’s Next?

In the next lab, we will delve into sampling techniques. You will build on these skills by
exploring core sampling methods, distinguishing between probability and non-probability
approaches, and applying these techniques in R to design robust studies and draw reliable
inferences from your data.

413

9 Sampling Techniques

9.1 Introduction

Welcome to Lab 9, where we will focus on understanding and applying sampling techniques.
In the world of data analysis and statistics, drawing reliable conclusions often depends on how
we collect our data. Since it’s rarely feasible—financially or logistically—to gather information
from every member of a population, we turn to sampling. Sampling is the process of selecting
a subset of individuals, observations, or objects from a larger population. If done properly,
sampling allows us to save time, money, and effort while still gaining valuable insights that
can accurately represent the entire group.

Figure 9.1: Population and Sample Illustration

Sampling is a cornerstone of research, and how you choose your sample can determine the
accuracy and credibility of your conclusions. Consider the challenge of predicting election
results: it would be impossible to survey every single voter. Instead, we carefully select a

414

smaller group that reflects the overall population. By choosing the right sampling technique,
we can make meaningful predictions and avoid misleading outcomes.

In this lab, we will explore both probability and non-probability sampling methods. You’ll
learn about a range of techniques, their pros and cons, and the situations in which each method
is most appropriate. We will also practice implementing these approaches in R, allowing you
to reinforce these concepts with hands-on experience.

9.2 Learning Objectives

By the end of this lab, you should be able to:

• Understand Probability vs. Non-Probability Sampling:
Recognize how probability sampling allows for generalizing results, while non-probability
methods are often used for exploratory or hard-to-reach populations.

• Describe Common Probability Sampling Methods:
Learn about simple random, stratified, cluster, and systematic sampling, and understand
when to use each method.

• Describe Common Non-Probability Sampling Methods:
Understand convenience, snowball, judgmental (purposive), and quota sampling, and
appreciate their limitations.

• Match Methods to Research Scenarios:
Identify which sampling strategy is most suitable given the research goals, data availabil-
ity, and constraints.

• Reflect on Trade-Offs:
Consider the strengths and weaknesses of different sampling approaches and how these
choices affect your ability to generalize findings.

By completing this lab, you’ll be better equipped to design robust studies, interpret results
confidently, and ensure that your data-driven conclusions stand on a solid methodological
foundation.

9.3 Why Do We Sample?

Imagine you want to understand the average height of all adults in your country. Actually
measuring every adult’s height would be incredibly difficult, time-consuming, and expensive.
Instead, you might measure a carefully chosen group (sample) that fairly represents the entire
population. From this sample, you can estimate the overall average height. But if your

415

sample is biased or poorly chosen, your conclusions may be misleading. That’s why thoughtful
sampling techniques matter.

9.4 Sampling Terminology

• Population: The entire group of individuals or items of interest.

• Sample: A subset of the population selected for analysis.

• Sampling Frame: A list or other resource that identifies all or most members of the
population, from which we select the sample.

• Parameter: A numerical summary (e.g., mean, proportion) that describes some char-
acteristic of the population.

• Statistic: A numerical summary that describes some characteristic of the sample, used
to estimate the corresponding population parameter.

9.5 Understanding Probability and Non-Probability Sampling

In research, the strategies we use to select samples can vary greatly depending on the discipline,
research area, and specific study. Broadly speaking, there are two main types of sampling
methods: probability sampling and non-probability sampling.

416

Figure 9.2: Overview of Sampling Methods

Probability Sampling

Probability Sampling methods ensure that every member of the population has a known chance
of being included in the sample. This randomness allows you to measure how much uncertainty
exists in your estimates. With probability sampling, statistical theory helps you gauge how
closely your sample results match the real population values.

Non-Probability Sampling

Non-probability sampling methods do not rely on random selection; instead, they are based
on subjective judgement, convenience, referrals, or other non-random criteria. Because not
every member of the population necessarily has a known or equal chance of being included,
these approaches often lack representativeness and make it harder to generalize results with
confidence. Nevertheless, they are commonly used in exploratory research, when dealing with
hidden populations, or under severe time and resource constraints, even though their inherent
bias can complicate accuracy and limit the applicability of findings.

Reflection Question 1

Why might you choose a non-probability sampling method if it doesn’t allow you to
confidently generalize findings to the entire population?

417

9.6 Experiment 9.1: Probability Sampling Techniques

9.6.1 Simple Random Sampling (SRS)

In a simple random sample, every member of the population has an equal probability of being
selected. This is often considered the “gold standard” because it tends to produce unbiased
estimates if done correctly. It’s like pulling names out of a hat—no individual is favoured over
another.

Figure 9.3: Simple Random Sampling Process

When to Use:

• When you have a well-defined population and a good sampling frame.

• When you want each unit in the population to have an equal chance of selection.

• When you do not need to target specific subgroups.

Pros:

Minimizes selection bias and is straightforward to implement if a complete list (sampling frame)
exists.

Cons:

Can be difficult when the population is very large or when no complete sampling frame is
available.

418

Example Scenario:

Suppose a university wants to know the average study time of its undergraduate students.
Since the university has access to a complete list of all undergraduates, it can take a simple
random sample of a few hundred students to estimate the overall average study time. Each
student in the population would be equally likely to be selected, ensuring an unbiased estimate
if done correctly.

Example Scenario using R:

Before coding, imagine having a large jar with 10,000 student IDs. To find out the average
time they spend studying, you wouldn’t ask all 10,000 students—too time-consuming. Instead,
you mix the IDs thoroughly and draw 500 at random, giving each student an equal chance
of selection. In R, we’ll recreate this process by using a numeric vector of 10,000 IDs and
randomly selecting 500 from it. This smaller group will help us reliably estimate the overall
average study time. Here’s how:

Ensures that we get the same random sample each time for reproducibility
set.seed(123)

Imagine this is our complete list of undergraduates, each assigned a unique ID
student_ids <- 1:10000

Draw a simple random sample of 500 students from the 10,000
sample_srs <- sample(student_ids, size = 500, replace = FALSE)

Shows the first few sampled student IDs
head(sample_srs)

#> [1] 2463 2511 8718 2986 1842 9334

By running this code, you’ll see a handful of randomly chosen IDs. These represent your simple
random sample—your mini version of the entire student body—ready for you to contact and
measure their study hours.

9.6.2 Exercise 9.1.1: Simple Random Sampling with the Penguins Dataset

Use the penguins dataset from the palmerpenguins package to perform a simple random
sample of 10 penguins. Compare the mean body mass of this sample to the mean body mass
of the entire dataset.

Steps:

419

1. Load the palmerpenguins package and examine the penguins dataset.

2. Remove any rows with missing values to ensure you have a complete dataset.

3. Set a seed for reproducibility.

4. Select a simple random sample of 10 penguins from the complete dataset.

5. Calculate the mean body mass of the entire dataset.

6. Calculate the mean body mass of your sample.

7. Compare these two means and reflect on any differences.

See the Solution to Exercise 9.1.1

9.6.3 Stratified Sampling

Stratified sampling involves dividing the population into distinct subgroups (called strata) and
then taking a proportional random sample from each subgroup. Strata are often formed based
on characteristics you care about—like gender, age range, or region.

Figure 9.4: Stratified Sampling Process

When to Use:

420

• When the population is heterogeneous, and you want to ensure representation from all
key subgroups.

• When you know something about how the population differs and you want your sample
to reflect those differences accurately.

Pros:

Ensures that important subgroups are properly represented, leading to more precise esti-
mates.

Cons:

Requires that you can clearly define and identify meaningful strata.

Example Scenario:

Suppose you want to survey residents of a country about their internet usage. You know age
affects usage patterns, so you split the population into age groups—like 18–29, 30–49, and
50+—and then pick a sample from each group in proportion to their presence in the entire
population. By doing this, you ensure each age category is fairly represented, resulting in a
more balanced and accurate sample.

Example Scenario using R:

Now, let’s see how to perform stratified sampling based on age groups in R:

Load dplyr for data manipulation
library(dplyr)

Ensures reproducibility
set.seed(123)

Create a hypothetical population dataset with age groups
population_data <- data.frame(
id = 1:1000,
age_group = sample(c("18-29", "30-49", "50+"), size = 1000, replace = TRUE)

)

Check the proportions of each age group in the population
prop.table(table(population_data$age_group))

#>
#> 18-29 30-49 50+
#> 0.326 0.331 0.343

421

Perform stratified sampling: take 10% from each age group,
maintaining the overall proportion of each age group
stratified_sample <- population_data %>%
group_by(age_group) %>%
sample_frac(0.1)

Check the proportions in the stratified sample
prop.table(table(stratified_sample$age_group))

#>
#> 18-29 30-49 50+
#> 0.33 0.33 0.34

Reflection Question 2

How might stratified sampling improve the accuracy of your results compared to simple
random sampling when the population is made up of very different subgroups?

9.6.4 Exercise 9.1.2: Stratified Sampling with the Diamonds Dataset

Use the diamonds dataset from the ggplot2 package to perform stratified sampling based
on the cut variable. Ensure your sample maintains similar proportions of each cut category
as in the full dataset, then compare these distributions.

Steps:

1. Load the ggplot2 package and review the diamonds dataset.

2. Identify the cut variable and examine its distribution in the full dataset.

3. Determine the proportion of each cut category.

4. Choose a sample size (e.g., 500 diamonds) and perform stratified sampling to maintain
these proportions.

5. Compare the distribution of cut categories in your stratified sample to that in the full
dataset.

See the Solution to Exercise 9.1.2

422

9.6.5 Cluster Sampling

In cluster sampling, the population is divided into naturally occurring groups (clusters), such as
households, schools, or city blocks. Instead of sampling individuals across the entire population,
you randomly select a few clusters and then measure all or a sample of the units within those
selected clusters.

Figure 9.5: Cluster Sampling Process

When to Use:

• When the population is very large and spread out, making it difficult to select a simple
random sample from the entire population.

• When cost or logistical constraints make it easier to collect data from a few whole groups
rather than scattering your efforts all over the place.

Pros:

Cost-effective and practical when dealing with large, geographically spread-out populations.

Cons:

The variability within clusters can affect precision. If clusters differ greatly from each other,
a few selected clusters may not represent the entire population well.

Example Scenario:

423

Imagine you want to conduct a national health survey. Your population is huge and spread
across hundreds of hospitals around the country. Visiting every hospital or sampling patients
one by one from all over would be overwhelming and expensive.

Instead, you randomly pick a small number of hospitals (clusters). Within these selected
hospitals, you either survey every patient or take a smaller random sample of patients there.

Example Scenario using R:

Now, let’s see how we can simulate this process in R:

set.seed(123)

Suppose we have 100 hospitals (clusters), each with 50 patients
hospital_id <- rep(1:100, each = 50) # 100 hospitals, each with 50 patients

Create a data frame of patients, assigning hypothetical health measures:
Blood Pressure and BMI
patient_df <- data.frame(
patient_id = 1:5000,
hospital = hospital_id,
blood_pressure = rnorm(5000, mean = 120, sd = 15),
bmi = rnorm(5000, mean = 25, sd = 4)

)

Randomly select 5 hospitals (clusters) for the study
selected_hospitals <- sample(unique(patient_df$hospital),
size = 5, replace = FALSE

)

Extract the data for patients in the selected hospitals
cluster_sample <- patient_df |> filter(hospital %in% selected_hospitals)

cluster_sample |> head()

#> patient_id hospital blood_pressure bmi
#> 1 501 11 110.9716 19.57108
#> 2 502 11 105.0945 19.82921
#> 3 503 11 135.4018 18.93117
#> 4 504 11 131.2659 28.43670
#> 5 505 11 97.3625 20.14153
#> 6 506 11 118.5728 27.47622

424

Check how many patients we have from each selected hospital

cluster_sample |> count(hospital)

#> hospital n
#> 1 11 50
#> 2 24 50
#> 3 50 50
#> 4 59 50
#> 5 95 50

In this example, we use cluster sampling by first selecting 5 hospitals (clusters) from the 100
available. After choosing these clusters, we create a cluster_sample that includes all patients
from the selected hospitals. By surveying every patient within these clusters rather than just a
subset, we simplify data collection, reduce costs, and focus our efforts on a few representative
groups rather than trying to survey patients from every hospital. This approach still allows
us to gather valuable information, such as blood pressure and BMI, to better understand the
broader population’s health.

9.6.6 Exercise 9.1.3: Cluster Sampling with a Simulated Dataset

In this exercise, you will create a simulated dataset of customers grouped by city. Each city
represents a cluster. You will then perform cluster sampling by selecting a few cities and
comparing a key characteristic (such as average customer spending) in the sampled clusters
versus the entire population.

Steps:

1. Create a simulated dataset of customers, assigning each customer to a city (cluster).

2. Assign some characteristic to each customer (e.g., monthly spending).

3. Randomly select a few cities (clusters).

4. Extract all customers from the selected cities to form your cluster sample.

5. Compare the overall characteristics (e.g., mean monthly spending) of the cluster sample
to those of the entire population.

See the Solution to Exercise 9.1.3

425

9.6.7 Systematic Sampling

Systematic sampling involves selecting every kth individual from a list or sequence after start-
ing at a random point. For example, if you have a list of 10,000 customers and you need a
sample of 500, you would pick every (10000/500) = 20th customer after a random start.

Figure 9.6: Systematic Sampling Process

When to Use:

• When you have a complete list of the population in a random order.

• When it’s easier to pick samples at regular intervals rather than random draws.

Pros:

Simple and efficient once you have a list, and ensures a fairly even spread of the sample across
the population.

Cons:

Can introduce bias if the list has a hidden pattern that coincides with the selection interval.

Example Scenario:

Suppose your factory produces 10,000 identical parts in a day (that’s your total population).
You want to inspect 500 of these parts to ensure quality—a big enough sample to spot any

426

consistent issues. Rather than randomly stopping the production line and risking inefficiency,
you decide to pick every 20th item (10,000/500 = 20) for inspection after a randomly chosen
start point between 1 and 20.

Example Scenario using R:

Now, let’s see how to simulate this process in R.

set.seed(123) # Ensure reproducibility

Suppose the factory produces 10,000 parts a day
total_parts <- 10000

We want to inspect 500 parts
sample_size <- 500

Determine the sampling interval (k)
k <- total_parts / sample_size

Choose a random start point between 1 and k
start <- sample(1:k, 1)

Create a sequence of parts to inspect: every k-th part starting from 'start'
inspected_parts <- seq(from = start, to = total_parts, by = k)

Look at the first few part IDs selected
head(inspected_parts)

#> [1] 15 35 55 75 95 115

This systematic approach ensures a steady, predictable pattern: once you set your start, you
simply check every 20th part as it comes off the line. By the end of the day, you’ll have a
representative sample of 500 parts spaced evenly throughout the entire production run.

9.6.8 Exercise 9.1.4: Systematic Sampling on a Simple List

Use systematic sampling to select individuals from a simple list of IDs (e.g., 1:1000). Your
desired sample size is 100. Choose an appropriate interval k, select every kth individual, and
verify that the resulting sample follows the intended pattern. Experiment with different values
of k to see how the sample changes.

Steps:

427

1. Create a vector of individuals (e.g., 1:1000).

2. Set the desired sample size to 100.

3. Calculate the interval k (for a list of 1000 individuals and a sample of 100, k = 1000/100
= 10).

4. Randomly select a starting point between 1 and k.

5. Choose every kth element after that starting point.

6. Check that the sample size is correct and that each selection is spaced by k.

7. Experiment with different k values (e.g., 20 or 50) and observe the differences.

See the Solution to Exercise 9.1.4

9.6.9 Practice Quiz 9.1: Probability Sampling

Question 1:

What is the defining feature of probability sampling methods?

a) They always use large sample sizes

b) Each member of the population has a known, nonzero chance of selection

c) They never require a sampling frame

d) They rely on the researcher’s judgment

Question 2:

In simple random sampling (SRS), every member of the population:

a) Has no chance of being selected

b) Is selected to represent different subgroups

c) Has an equal probability of being selected

d) Is chosen based on convenience

Question 3:

Stratified sampling involves:

428

a) Selecting whole groups at once

b) Sampling every kth individual

c) Ensuring subgroups are represented proportionally

d) Selecting individuals recommended by others

Question 4:

Which method is best if you know certain subgroups (strata) differ and you want each to be
represented in proportion to their size?

a) Simple random sampling

b) Stratified sampling

c) Cluster sampling

d) Convenience sampling

Question 5:

Cluster sampling is typically chosen because:

a) It is guaranteed to be perfectly representative

b) It reduces cost and logistical complexity

c) It involves selecting individuals from every subgroup

d) It ensures each individual has the same probability of selection as in SRS

Question 6:

In a national health survey using cluster sampling, which of the following represents a “clus-
ter”?

a) A randomly chosen patient from all over the country

b) A randomly selected set of hospitals

c) A proportionate sample of age groups

d) Every 10th patient in a hospital list

429

Question 7:

Systematic sampling selects individuals by:

a) Relying on personal judgment

b) Selecting every kth individual after a random start

c) Dividing the population into strata

d) Choosing only those easiest to reach

Question 8:

If the population is 10,000 units and you need a sample of 100, the interval k in systematic
sampling is:

a) 10 (10,000 ÷ 1,000)

b) 100 (10,000 ÷ 100)

c) 20 (10,000 ÷ 500)

d) 50 (10,000 ÷ 200)

Question 9:

One advantage of systematic sampling is:

a) It ensures no bias will ever occur

b) It provides a convenient and even spread of the sample

c) It requires no sampling frame

d) It automatically includes all subgroups

Question 10:

Which of the following is NOT a probability sampling method?

a) Simple random sampling

b) Stratified sampling

c) Cluster sampling

430

d) Convenience sampling

See the Solution to Quiz 9.1

9.7 Experiment 9.2: Non-Probability Sampling Techniques

9.7.1 Convenience Sampling

Convenience sampling involves selecting whichever individuals are easiest to reach. This is
a non-probability method, meaning it does not rely on random selection. Because it doesn’t
ensure every member of the population has a chance to be selected, it can produce biased
results.

Figure 9.7: Convenience Sampling Illustration

When to Use:

431

• Often used in preliminary studies or quick polls when resources are limited and accuracy
is not the top priority.

• When no sampling frame is available, and some data is better than none (with caution).

Pros:

Quick, inexpensive, and easy when you just need preliminary insights.

Cons:

High potential for bias, as the sample may not represent the broader population.

Example Scenario:

A student researcher stands outside the campus cafeteria and surveys the first 50 people
who walk out. This approach is simple and fast, but it may not reflect the broader student
population’s opinions or habits.

Example Scenario using R:

set.seed(123)
Suppose we have a dataset of 1,000 students, each with a favorite cafeteria meal
students <- data.frame(
student_id = 1:1000,
favorite_meal = sample(c("Pizza", "Salad", "Burger"), 1000, replace = TRUE)

)

A convenience sample might just be the first 50 students in the dataset
convenience_sample <- head(students, 50)

Check the distribution of favorite meals in the convenience sample
table(convenience_sample$favorite_meal)

#>
#> Burger Pizza Salad
#> 19 16 15

Here, the researcher did not randomly select the students. Instead, they simply took whoever
was most convenient (the first 50 encountered). While easy, this sample may not accurately
represent the entire student body’s meal preferences.

432

9.7.2 Snowball Sampling

Snowball also known as referral or respondent-driven sampling is used when you have difficulty
identifying or accessing members of your target population. In this approach, you start by
contacting a few known individuals (called “seeds”) who fit your criteria. These initial par-
ticipants then refer you to others who share similar characteristics or experiences, and those
people, in turn, refer you to still more. This process continues, “snowballing” into a larger
sample.

Figure 9.8: Snowball Sampling Process

When to Use:

• When the target population is hidden, rare, or hard to reach (e.g., migrant workers
without official registrations, individuals involved in niche subcultures, or certain patient
populations).

• When there is no comprehensive sampling frame or list of potential participants.

• Useful in qualitative or exploratory research to gain trust and access through existing
social networks.

Pros:

Useful for reaching hidden or hard-to-identify populations (e.g., people in specialized niches
or vulnerable communities).

Cons:

433

Samples may become biased because they rely on social networks and the people your initial
contacts know, potentially missing whole segments of the population.

Example Scenario:

You are researching the experiences of freelance data scientists working only on “dark web”
analytics—a specialized niche. Identifying such individuals through a public list is almost
impossible. You might start with one or two data scientists you know personally, interview
them, then ask them to introduce you to colleagues or friends who also fit the criteria.

Example Scenario using R:

In practice, simulating snowball sampling in R might involve having a small “network” or
“graph” of individuals and selecting from them based on connections:

set.seed(123)

Simulate a simple network as a data frame of individuals and their connections
individuals <- data.frame(
id = 1:20,
Each individual is connected to 1-3 others at random
contacts = I(lapply(1:20, function(x) {

sample(1:20,
size = sample(1:3, 1), replace = FALSE

)
}))

)

Start with a known "seed"
seed <- 5

Get the seed’s contacts
first_wave <- unlist(individuals$contacts[individuals$id == seed])

Get contacts of the first wave (second wave)
second_wave <- unique(unlist(individuals$contacts[individuals$id %in% first_wave]))

Combine all waves (excluding duplicates)
snowball_sample_ids <- unique(c(seed, first_wave, second_wave))
snowball_sample_ids

#> [1] 5 9 3 8 20 17 11 12 15 10

Here, we’ve shown a conceptual approach. In reality, you’d rely on your participants to provide
referrals, not just a pre-defined network in code.

434

9.7.3 Judgmental (Purposive) Sampling

Judgmental or purposive sampling involves selecting participants based on the researcher’s
knowledge, expertise, and judgment. The idea is to choose subjects who are considered to be
the most useful or representative to the research study’s aims, rather than randomly.

Figure 9.9: Purposive Sampling Process

When to Use:

• When you want to focus on a particular type of participant who can provide the most
relevant information for your research question.

• When you have expert knowledge guiding which subjects are most informative.

• Often used in qualitative research or early-stage exploratory studies.

Pros:

Focuses on key individuals who can provide the richest information.

Cons:

Highly subjective and may reflect researcher bias. Not suitable for drawing generalizable
statistical conclusions.

Example Scenario:

A researcher wants to understand high-level strategic decision-making processes within a large
biotechnology firm. Rather than interviewing employees from all levels, the researcher decides

435

to focus on those individuals most likely to provide valuable insights into industry trends,
company strategy, and organizational challenges—namely the top leadership team.

Example Scenario using R:

Imagine you have a dataset of professionals and their roles:

set.seed(123)
Suppose we have data on 100 professionals in a biotechnology firm
professionals <- data.frame(
id = 1:100,
role = sample(c("CEO", "CTO", "Engineer", "Analyst", "Intern"), 100,

replace = TRUE
),
Poisson-distributed years of experience
years_experience = rpois(100, lambda = 10)

)

professionals |> head()

#> id role years_experience
#> 1 1 Engineer 8
#> 2 2 Engineer 8
#> 3 3 CTO 9
#> 4 4 CTO 10
#> 5 5 Engineer 14
#> 6 6 Intern 8

A purposive sample might focus on senior leadership roles that the researcher believes offer
the most strategic insights into the industry: CEOs and CTOs.

purposive_sample <- subset(professionals, role %in% c("CEO", "CTO"))

purposive_sample |> head()

#> id role years_experience
#> 3 3 CTO 9
#> 4 4 CTO 10
#> 8 8 CEO 9
#> 9 9 CTO 11
#> 14 14 CEO 8
#> 16 16 CEO 7

436

In this example, the researcher chooses participants not by chance, but based on their roles
(CEO and CTO) and, indirectly, on their likely longer tenure. While a CEO or CTO may not
always have more experience than an Engineer, it’s reasonable to assume that top leadership
generally has a wealth of industry insights. This selection method—judgmental or purposive
sampling—reflects the researcher’s informed decision about who can provide the most valuable
information for the study.

9.7.4 Quota Sampling

Quota sampling involves dividing the population into subgroups based on certain characteris-
tics (such as age groups, gender, or education level) and then non-randomly selecting individu-
als to meet a pre-set quota that matches these characteristics in proportion to their estimated
prevalence in the population. Although similar to stratified sampling in concept, the selection
within each subgroup is not random, making it a non-probability technique.

Figure 9.10: Quota Sampling Process

When to Use:

• When you want the sample to reflect certain known proportions of subgroups in the
population, but you cannot or do not wish to randomly sample within these strata.

• Often used in market research, opinion polling, or early exploratory surveys where strict
probability sampling is not feasible.

Pros:

Ensures representation of certain subgroups, providing more “balanced” samples compared to
pure convenience sampling.

Cons:

437

Still non-random, and the people chosen within each quota are determined by convenience or
researcher judgment, potentially introducing bias.

Example Scenario:

A company wants feedback on a new product from a demographic that matches their customer
base: 50% women and 50% men. Instead of randomly selecting participants, the researcher
ensures that interviews continue until they have reached the quota—e.g., 25 women and 25
men—by selecting participants conveniently until quotas are met.

Example Scenario using R:

Now, let’s see how to simulate this process in R.

set.seed(123)
customers <- data.frame(
id = 1:200,
gender = sample(c("Male", "Female"), 200, replace = TRUE),
purchase = sample(c("Yes", "No"), 200, replace = TRUE)

)

Suppose we want a sample of 40 customers, with a quota: 20 Female and 20 Male, We’ll select
conveniently (say, the first ones we encounter) until quotas are met.

quota_female <- customers |>
filter(gender == "Female") |>
slice(1:20)

quota_male <- customers |>
filter(gender == "Male") |>
slice(1:20)

quota_sample <- quota_female |> bind_rows(quota_male)

quota_sample |> count(gender)

#> gender n
#> 1 Female 20
#> 2 Male 20

In this simplistic example, we chose the first occurrences (mimicking convenience selection)
until each quota was filled.

438

Reflection Question 3

How can non-probability sampling methods still provide value, even if their findings can’t
be easily generalized to the entire population?

9.7.5 Practice Quiz 9.2: Non-Probability Sampling

Question 1:

Non-probability sampling methods are often chosen because:

a) They guarantee generalizable results

b) They are cheaper, faster, or more practical

c) They eliminate all forms of bias

d) They require a complete list of the population

Question 2:

Which method involves selecting participants who are easiest to reach?

a) Convenience sampling

b) Snowball sampling

c) Purposive sampling

d) Quota sampling

Question 3:

Snowball sampling is most useful for:

a) Large, well-documented populations

b) Populations where every member is easily identified

c) Hidden or hard-to-reach populations

d) Ensuring random selection of subgroups

439

Question 4:

In snowball sampling, the sample grows by:

a) Randomly picking individuals from a list

b) Selecting every kth individual

c) Asking initial participants to refer others

d) Dividing the population into equal parts

Question 5:

Judgmental (purposive) sampling relies on:

a) Each member of the population having an equal chance

b) The researcher’s expertise and judgment

c) Selecting individuals based solely on their availability

d) A systematic interval selection

Question 6:

A researcher who specifically seeks out top experts or key informants in a field is using:

a) Purposive (judgmental) sampling

b) Cluster sampling

c) Systematic sampling

d) Simple random sampling

Question 7:

Quota sampling ensures subgroups are represented by:

a) Randomly selecting from each subgroup

b) Matching known proportions but using non-random selection

c) Following a strict interval for selection

d) Relying on participant referrals

440

Question 8:

In quota sampling, once you have met the quota for a subgroup:

a) You continue selecting more participants from it anyway

b) You stop selecting participants from that subgroup

c) You switch to random selection

d) You start using a different method

Question 9:

A main drawback of non-probability methods is:

a) They are always expensive

b) They cannot measure uncertainty and generalize results easily

c) They require a complete list of the population

d) They eliminate researcher bias

Question 10:

Which non-probability method would you likely use if you have no sampling frame and need
participants quickly, even though it might not be representative?

a) Simple random sampling

b) Stratified sampling

c) Convenience sampling

d) Systematic sampling

See the Solution to Quiz 9.2

9.7.6 Choosing the Right Sampling Technique

Selecting the appropriate sampling technique depends on your research goals, available data,
resources, and the need for representativeness.

441

• Probability-based methods (like simple random, stratified, cluster, and systematic sam-
pling) are generally preferred for statistical inference because they reduce bias and allow
for the estimation of sampling error.

• Non-probability methods can be useful for exploratory research, generating hypotheses,
or when it’s simply impossible to use a probability sample. However, always be aware of
their limitations and be cautious when generalizing findings from these samples.

Reflection Question 4

Think of a scenario where probability sampling would be ideal and another where non-
probability sampling would be more realistic. What makes these contexts so different?

9.8 Reproducibility and Ethics

Documenting your sampling decisions, ensuring transparency, and acknowledging limitations
are crucial for building trust in your results. Also, consider whether your sampling method
might unintentionally exclude or disadvantage certain groups, and think about the ethical
implications of doing so.

Reflection Question 5

How could the sampling method you choose affect the fairness and ethics of a study,
especially when dealing with sensitive populations or topics?

Reflective Summary

By exploring these techniques, you’ve seen how critical the selection process is in shaping
the reliability and fairness of your data-driven insights. Probability sampling offers a path to
generalizable, statistically sound conclusions, while non-probability methods provide flexibility,
convenience, and creative ways to reach challenging populations—albeit with caution.

Understanding the trade-offs among these methods is key. Armed with these insights, you’re
better prepared to design well-structured studies, interpret results accurately, and acknowledge
limitations transparently.

What’s Next?

In the next lab, we dive into the Data Science Concept—a culmination of all the tech-
niques you’ve learned in this book. Built upon your skills in data wrangling, visualisation,
and statistical concept, this lab will show you how to integrate these methods into a com-
plete, real-world data science workflow.

442

10 Data Science Concept

10.1 Introduction

Welcome to Lab 10! In this lab, we will explore the concept of data science. Data science is both
an art and a science, blending statistical thinking, programming skills, computational methods,
and domain knowledge to transform raw data into actionable insights. It is the critical bridge
between raw numbers and actionable knowledge in a world of information. More than just a
field, data science has the potential to revolutionise how we make decisions and understand
the world, showcasing its transformative power and impact.

In previous labs, you learned about organising workflows, preparing data, and creating com-
pelling visualisations. Now, you’ll contextualise these skills within the broader realm of data
science. Understanding its principles and workflows allows you to navigate complex projects
with robust, reproducible, and scientifically grounded analyses.

Data science thrives at the intersection of disciplines—mathematics, statistics, computer sci-
ence, and domain expertise—each contributing essential elements. This interdisciplinary na-
ture of data science not only makes it a challenging and dynamic field but also enriches it
with diverse perspectives and approaches. Whether predicting sales, detecting anomalies, rec-
ommending products, or automating decisions, data science equips you with the tools and
frameworks to tackle intricate challenges. Unsurprisingly, Harvard Business Review dubbed
data science the “sexiest job of the 21st century,” reflecting its importance and allure1.

10.2 Learning Objectives

By the end of this lab, you will be able to:

• Define Data Science and Its Interdisciplinary Nature
Understand how data science draws upon statistics, programming, domain expertise, and
communication to extract meaningful insights.

1Davenport, T. H., & Patil, D. J. (2012). Data scientist: The sexiest job of the 21st century. Harvard Business
Review, 90(10), 70–76. https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century

443

• Recognise Key Use Cases and Applications
Identify real-world scenarios—forecasting, pattern detection, recommendation systems—
where data science delivers value.

• Describe the Data Science Lifecycle
Understand the phases of data science projects, from importing and tidying data through
transformation, modelling, visualisation, and communication.

• Appreciate the Role of a Data Scientist
Recognise the diverse skill set, responsibilities, and evolving role of data scientists in
modern organisations.

• Connect Data Science Concepts to Previous Labs
Relate data science principles to earlier labs on data wrangling, visualisation, and repro-
ducibility, reinforcing a cohesive understanding of the end-to-end analytical workflow.

By completing Lab 10, you’ll gain a holistic understanding of what data science entails, the
roles and skills of data scientists, and the typical lifecycle that guides projects from concept
to actionable insights. This foundation sets the stage for integrating all the technical skills
you’ve acquired into meaningful, real-world applications.

10.3 Prerequisites

Before starting this lab, you should have:

• Completed previous labs (especially Labs 4, 5, 6, and 7) to be familiar with setting up
reproducible workflows, transforming data, and creating visualisations.

• Basic understanding of statistical concepts and programming fundamentals in R.

• An interest in applying these skills to solve problems and support evidence-based decision-
making.

10.4 Real-World Scenario: Data Science in Action

Consider working in a healthcare analytics team that aims to predict patient readmissions.
Your data includes patient demographics, medical histories, treatment plans, and outcomes.
By applying data science methods—cleaning and transforming raw hospital records, building
predictive models, and communicating results to clinicians—you can help target interventions
that reduce readmissions, improve patient care, and optimise resource allocation.

In this scenario, all the components of data science—technical mastery, statistical rigour,
domain understanding, and effective communication—come into play. Data science thus not

444

only solves problems but also supports better-informed strategies that can impact patient
lives.

10.5 Understanding Data Science

Imagine data science as a field that draws on a multitude of ideas and skills from various
disciplines to solve problems and uncover insights. One way to visualise this interdisciplinary
nature is shown in Figure 10.1a. In this diagram, ‘data science’ sits at the centre, surrounded by
petals labelled ‘visualisation’, ‘statistical modelling’, ‘statistical computing’, ‘data technology’,
‘data research’, ‘data consulting’, ‘real-world applications’, and ‘scientific methods’. Each petal
represents a key area or responsibility within the data science process, inspiring your interest
and engagement in this dynamic field.

Another useful way to understand how these areas connect is through a Venn diagram over-
lapping three main circles: Mathematics/Statistics, Domain Expertise, and Computer Sci-
ence/Programming, as shown in Figure 10.1b. At the intersection of these circles, data science
draws on their collective strengths. From the mathematical side, it utilises statistical research
and machine learning techniques. With domain expertise, it incorporates business- or field-
specific knowledge to shape pertinent questions. And from computer science, it relies on
programming and data-processing skills to manage large datasets effectively.

(a) Core Disciplines Encompassed by Data Science
(b) Data Science at the Intersection of Domain Ex-

pertise, Mathematics, and Computer Science

Figure 10.1: The Scope and Foundations of Data Science

445

Taken together, these perspectives highlight data science as a highly collaborative and mul-
tifaceted discipline. It demands an understanding of essential concepts (such as statistical
modelling and coding) and the ability to apply them to real-world challenges across numerous
sectors. By mastering the overlapping skills in these areas, you can explore data, generate
valuable insights, and ultimately make evidence-based decisions—demonstrating the practical
impact of data science.

Reflection Question 10.1

How does integrating multiple disciplines—statistics, programming, domain expertise,
communication—enable data scientists to tackle more complex questions than any single
field could address alone?

10.6 Data Science Use Cases

Data science has transformed industries by delivering innovative, data-driven solutions to
complex problems:

• Forecasting: Predict future sales, revenue, or retention.

• Pattern Detection: Identify weather trends or detect market shifts.

• Recommendations: Suggest products, content, or services.

• Anomaly Detection: Spot fraudulent transactions, defects, or suspicious behaviour.

• Automation and Decision-Making: Conduct background checks, assess credit, and
streamline operations.

• Classification: Categorise emails as spam or not, diagnose diseases, and flag phishing
sites.

• Recognition: Enable facial, voice, or text recognition technologies.

Figure 10.2: Real-World Applications of Data Science Across Industries

446

Reflection Question 10.2

Which data science application resonates most with your interests or field, and why might
it be challenging or rewarding to implement?

10.7 Who is a Data Scientist?

A data scientist:

• Collects and Organises Data: Gathers, cleans, and structures data into analysis-
ready formats.

• Analyses Patterns and Trends: Uses statistical and computational methods to find
relationships and identify important features.

• Communicates Findings: Translates complex analyses into accessible narratives and
insights for decision-makers.

The best data scientists combine technical prowess, creative thinking, and strong communica-
tion skills. They must understand how to analyse data, why particular patterns matter, and
effectively convey these insights.

Reflection Question 10.3

Beyond technical skills, why is communication and domain knowledge crucial for a data
scientist to make meaningful contributions?

10.8 Skills Required for Data Science

A successful data scientist blends multiple competencies:

• Programming: Proficiency in R, Python, and SQL.

• Data Wrangling: Cleaning, merging, and transforming datasets.

• Visualisation: Crafting clear, insightful charts and dashboards.

• Statistical Analysis: Applying models, tests, and confidence intervals to draw infer-
ences.

• Machine Learning: Building predictive or descriptive models to uncover patterns.

• Communication: Presenting results in understandable, persuasive forms.

447

• Domain Expertise: Understanding the context and constraints that shape data inter-
pretation.

Reflection Question 10.4

Which skill area do you feel is your strongest currently, and where do you see room for
the most improvement?

10.9 Becoming a Data Scientist

The path to becoming a data scientist involves the following:

1. Learn Programming Languages: Start with R for statistical analysis and Python
for broader machine learning tasks.

2. Build Real-World Projects: Apply your skills to real datasets, refining your approach
as you encounter practical challenges.

3. Master Statistics and Mathematics: Develop a solid foundation to ensure robust
model selection, validation, and interpretation.

4. Engage in Collaboration: Join communities, attend meetups, and participate in
hackathons. Seek mentorship to broaden your horizons.

5. Continuous Learning: Data science evolves rapidly; staying updated with new tools,
algorithms, and best practices is essential.

Reflection Question 10.5

In your journey towards becoming a data scientist, how will you balance pursuing tech-
nical skills with developing communication and domain-specific expertise?

10.10 Programming Languages for Data Science

R, Python, Julia, and Scala are popular choices in data science, each excelling in different areas.
R is renowned for statistical analysis and rich visualisation capabilities—ideal for academic
research and analytic prototyping. Python offers versatility and a vast ecosystem of libraries
for machine learning and deep learning tasks.

448

Figure 10.3: Popular Programming Languages for Data Science

Reflection Question 10.6

Considering your goals and project types, which programming language do you find most
appealing, and why?

10.11 The Data Science Lifecycle

Data science workflows are iterative, often cycling through exploration, modelling, and refine-
ment phases, usually following six key stages, as shown in Figure 10.4.

449

Figure 10.4: Data Science Workflow Phases 2

10.11.1 Import

Importing data into appropriate tools, such as R, Python, or spreadsheet software like Mi-
crosoft Excel, is the starting point of any data science project. This step provides the raw
materials for all subsequent stages—without data, there is no data science.

10.11.2 Tidy

Tidying data is one of data scientists’ most time-consuming yet essential tasks. Real-world
datasets are often messy and unstructured, requiring careful organisation into a format suitable
for analysis.

The principle of tidy data ensures that:

• Columns represent variables.

• Rows represent observations.

• Cells contain individual values.

This process, often called data wrangling or munging, is a critical foundation for successful
analysis.

2Wickham, H., Çetinkaya-Rundel, M., & Grolemund, G. (2023). R for data science (2nd ed.). O’Reilly Media.
ISBN: 978-1-4920-9740-2. Retrieved from https://r4ds.hadley.nz/

450

https://r4ds.hadley.nz/

10.11.3 Transform

Data transformation is another integral part of data wrangling. This involves creating new
variables or modifying existing ones to uncover patterns, relationships, or trends. Transforma-
tion helps refine the data into a format that aligns with the project’s analytical goals.

10.11.4 Visualise

Visualisation bridges raw data and actionable insights using charts, graphs, and interactive
dashboards. Tools like ggplot2 in R make this process intuitive and effective.

10.11.5 Models

Modelling applies statistical techniques or machine learning algorithms to answer questions or
make predictions. For example:

• Linear Regression: Predicting housing prices.

• Classification Models: Identifying spam emails. Proficiency in coding and a solid under-
standing of statistical methods are critical for interpreting and validating models.

10.11.6 Communicate

Effective communication is the final and most critical stage of the data science workflow.
Insights must be presented clearly and persuasively to stakeholders, ensuring they can
make informed decisions based on the findings. Tools like Quarto or R Markdown facilitate
professional-grade reports.

Reflection Question 10.7

How does viewing data analysis as a cyclical lifecycle (rather than a linear process)
influence how you approach projects, especially when dealing with complex or evolving
datasets?

10.12 Reproducibility and Ethical Considerations

As data science projects scale, reproducibility ensures others can verify and extend your work.
Following best practices—organising projects (Lab 4), tidying data (Lab 5), and documenting
code—is vital. Moreover, ethical considerations (privacy, bias mitigation, fairness) must be
integrated into every stage of the data science lifecycle.

451

Reflection Question 10.8

How can establishing reproducible workflows and considering ethical guidelines early in
a project help maintain trust and credibility in your analyses?

10.12.1 Practice Quiz 10.1

Question 1:

Data science is considered interdisciplinary because it involves the integration of:

a) Mathematics, domain expertise, and biological sciences

b) Programming, mathematics/statistics, and domain expertise

c) Philosophy, ethics, and data engineering

d) Chemistry, physics, and computer science

Question 2:

The iterative nature of the data science lifecycle is essential for:

a) Ensuring a one-time solution

b) Continuous refinement and improved insights

c) Avoiding communication and visualisation steps

d) Reducing time spent on data wrangling

Question 3:

In the context of anomaly detection, which of the following scenarios is most relevant?

a) Predicting future sales

b) Identifying fraudulent transactions

c) Recommending products to customers

d) Forecasting weather trends

452

Question 4:

Why is domain expertise considered critical in data science projects?

a) To eliminate the need for reproducible workflows

b) To ensure analyses are contextually accurate and meaningful

c) To substitute for statistical reasoning

d) To automate the cleaning process

Question 5:

Which of the following ethical considerations is essential in data science?

a) Automating decision-making without human oversight

b) Mitigating bias and ensuring fairness

c) Replacing statistical methods with machine learning

d) Eliminating reproducibility for scalability

Question 6:

In the healthcare analytics example, the role of predictive modelling primarily involves:

a) Replacing clinicians in decision-making

b) Identifying trends in patient demographics

c) Predicting patient readmissions and improving care

d) Tidying and transforming hospital data

Question 7:

During the “Tidy” phase of the data science lifecycle, what is the primary goal?

a) Creating dashboards for analysis

b) Organising data into a structured format for analysis

c) Designing machine learning models

d) Cleaning visualisations for stakeholder presentations

453

Question 8:

Which stage of the data science lifecycle involves crafting visual narratives to interpret re-
sults?

a) Model

b) Transform

c) Visualise

d) Import

Question 9:

Why is the “Communicate” phase considered critical in the data science lifecycle?

a) It automates repetitive data cleaning tasks

b) It presents findings clearly and persuasively to stakeholders

c) It eliminates the need for statistical reasoning

d) It directly replaces the “Model” phase

Question 10:

How does viewing data analysis as a cyclical lifecycle benefit complex projects?

a) Reduces the need for domain expertise

b) Supports iterative refinement and evolving datasets

c) Guarantees fixed solutions for all analyses

d) Simplifies reproducibility without documentation

See the Solution to Quiz 10.1

10.12.2 Exercise 10.1: Identifying Data Science Roles

Task: Suppose your team includes a statistician, a software engineer, a business analyst, and
a machine learning researcher. Discuss how each role contributes to a data science project to
predict hospital readmissions. Reflect on what gaps remain if one role is absent.

454

Reflection Question (for Exercise 10.1)

How does the presence (or absence) of specific skill sets within a data science team shape
the quality and scope of the project’s outcomes?

10.12.3 Exercise 10.2: Mapping Lab Skills onto the Data Science Lifecycle

Task: Revisit Labs 1–6 and identify how each set of skills (e.g., reproducible workflows, data
wrangling, visualisation) maps onto the stages of the data science lifecycle. For instance,
where does your expertise in dplyr fit, and how does your mastery of ggplot2 support the
Communication stage?

Reflection Question (for Exercise 10.2)

Does visualising how your learned skills align with each lifecycle stage help clarify your
long-term development path as a data scientist?

10.12.4 Exercise 10.3: Designing a Mini Project

Task: Think of a small data science project you can undertake (e.g., analysing weather data to
predict rainfall patterns). Outline which data you will import, how you will tidy and transform
it, what models you might apply, and how you will visualise and communicate results. Consider
missing data, how you would handle it, and potential ethical implications (e.g., data privacy,
sensitive attributes).

Reflection Question (for Exercise 10.3)

How does planning a mini project from start to finish help consolidate your understanding
of the data science concept and lifecycle?

10.13 Reflective Summary

In Lab 10, the techniques learned in earlier labs—such as reproducible workflows, data wran-
gling, and data visualisation—are contextualised within the comprehensive data science frame-
work.

Key Takeaways:

455

• Definition and Scope: Data science is interdisciplinary, drawing on multiple fields to
solve complex, real-world problems.

• Applications and Use Cases: Data science drives innovation in forecasting, pattern
detection, recommendation systems, anomaly detection, and more.

• Data Science Roles and Skills: Successful data scientists blend programming, statis-
tics, domain knowledge, and communication skills.

• Data Science Lifecycle: Projects evolve through importing, tidying, transforming,
modelling, visualising, and communicating results.

• Integrating Previous Skills: The workflows, data wrangling, and visualisations
learned in earlier labs form essential components of the data science process.

As you move forward, remembering the holistic nature of data science ensures that each skill—
be it project organisation (Lab 4), data wrangling (Lab 5 & Lab 6), or visualisation (Lab 7)—
contributes to a cohesive, meaningful analytical journey. Data science is not merely about tools
or techniques; it’s about asking the right questions, navigating complexities, and conveying
insights that drive informed decisions and positive change.

What’s Next?

In the next lab, Use Case Projects, you’ll integrate these skills to tackle real-world prob-
lems. You’ll design end-to-end workflows that turn raw data into actionable insights,
demonstrating how each component of your training comes together in practical, impact-
ful applications.

456

11 Use Case Projects

11.1 Introduction

In previous labs, you learned how to organise workflows, transform data, create visualisations,
and contextualise your technical skills within the broader field of data science. Lab 11 takes
this learning further by emphasising the power of applying your skills to realistic, end-to-
end projects. Engaging in use case projects bridges the gap between theory and practice,
allowing you to internalise concepts, strengthen problem-solving abilities, and gain invaluable
experience.

11.2 Learning Objectives

By the end of this lab, you will be able to:

• Integrate Previously Learned Skills into Practical Projects
Combine data wrangling, visualisation, reproducibility, and statistical techniques to solve
real-world problems.

• Improve Problem-Solving Through Iterative Practice
Gain the ability to troubleshoot, adapt, and refine your approach in response to unex-
pected challenges in data analysis.

• Develop a Holistic Understanding of Workflows
Recognise how each stage of the data analysis process—importing data, cleaning, trans-
forming, modelling, and communicating—fits into a cohesive project.

• Build Confidence and Portfolios
Complete projects that demonstrate your proficiency, increasing self-assurance and pro-
viding tangible evidence of your capabilities.

• Communicate Findings Effectively
Present insights, methods, and recommendations through clear reporting and visualisa-
tions, ensuring results can guide informed decisions.

457

By completing this lab, you’ll deepen your understanding of R and data analysis methodologies
by tackling real-world scenarios. This hands-on approach cements your learning, enhances
creativity, boosts confidence, and helps you build a portfolio of projects that can showcase
your capabilities to employers, colleagues, and mentors.

11.3 Prerequisites

Before starting this lab, you should have:

• Completed Labs 1–9, gaining familiarity with setting up R projects, transforming data,
visualising information, understanding the data science lifecycle, and contextualising
your technical skills.

• Basic understanding of statistical concepts, data wrangling, reproducible workflows, and
visualisation techniques.

• An interest in applying your learned skills to realistic scenarios, moving beyond isolated
exercises and theoretical discussions.

11.4 Why Use Case Projects?

While earlier labs focused on mastering individual techniques, use case projects show how these
techniques fit together in solving a real-world problem. This approach:

1. Application of Theory: Practical projects allow learners to apply the theoretical
knowledge they’ve acquired. This transition from theory to application often solidifies
understanding.

2. Problem-Solving Skills: Real-world projects present unforeseen challenges. By work-
ing through these, learners enhance their problem-solving skills and become adept at
troubleshooting.

3. Comprehensive Understanding: Use case projects often require the integration of
various R functions and techniques. This holistic approach ensures a deeper and more
comprehensive grasp of R.

4. Confidence Building: Successfully completing a use-case project boosts confidence,
giving students the assurance that they can tackle real-world data problems using R.

5. Portfolio Building: Adds substantial examples of your work for future presentations
or job applications.

458

Reflection Question

How does applying your skills in a realistic project setting differ from learning them in
isolation, and why might this approach lead to deeper mastery?

11.5 Use Case 1: Telco Customer Churn Data Analysis and
Visualization Assessment

You have been provided with the Telco Customer Churn dataset, which includes detailed infor-
mation on customer demographics, account details, subscribed services, and churn behaviour.
Your task is to leverage your R skills to transform, analyse, and visualise this data, gener-
ating actionable insights. Synthesize your findings into a concise report to communicate key
patterns, trends, and recommendations.

Dataset Overview

The Telco Customer Churn dataset provides comprehensive details about customers, including
their demographics, account information, service usage, and whether they have churned. Key
columns include:

• customerID: Unique identifier for each customer.

• gender: Customer gender (‘Male’ or ‘Female’).

• SeniorCitizen: Indicator if the customer is a senior (1 for Yes, 0 for No).

• Partner: Whether the customer has a partner (‘Yes’ or ‘No’).

• Dependents: Whether the customer has dependents (‘Yes’ or ‘No’).

• tenure: Number of months the customer has stayed with the company.

• PhoneService: Indicates if the customer has a phone service (‘Yes’ or ‘No’).

• MultipleLines: Indicates if the customer has multiple phone lines (‘Yes’, ‘No’, or ‘No
phone service’).

• InternetService: Type of internet service (‘DSL’, ‘Fiber optic’, or ‘No’).

• OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport, Stream-
ingTV, StreamingMovies: Service-specific columns with values (‘Yes’, ‘No’, or ‘No
internet service’).

• Contract: Customer’s contract type (‘Month-to-month’, ‘One year’, or ‘Two year’).

459

• PaperlessBilling: Whether the customer uses paperless billing (‘Yes’ or ‘No’).

• PaymentMethod: Customer’s payment method (e.g., ‘Electronic check’, ‘Mailed
check’, ‘Bank transfer (automatic)’, ‘Credit card (automatic)’).

• MonthlyCharges: Amount charged to the customer monthly.

• TotalCharges: Total amount charged to the customer.

• Churn: Indicates whether the customer has churned (‘Yes’ or ‘No’).

For full metadata, see sheet 2 of the telco-customer-churn.xlsx file or visit Kaggle.

Tasks

1. Data Manipulation and Transformation

a. Data Import:
• Locate and import the Telco Customer Churn data (telco-customer-churn.xlsx)

from the r-data directory. If you do not already have the file, you can down-
load it from Google Drive.

b. Variable Transformation:
• Transform the Churn column into a binary format (e.g., 1 for churned, 0 for

not churned).
• Recode the SeniorCitizen variable into a more descriptive format (e.g., “Yes”

for 1 and “No” for 0).

• Create a new variable, such as AvgChargePerMonth, calculated by dividing
TotalCharges by tenure (ensuring that cases where tenure is 0 are handled
appropriately).

• Optionally, develop another metric (e.g., a ServiceCount that aggregates the
number of additional services to which a customer subscribes).

2. Handling Missing and Inconsistent Values

a. Identify Issues:
• Scan the dataset for missing or inconsistent values, and document which

columns are affected.
b. Data Quality Improvement:

• Apply strategies to address any data quality issues (for example, convert
data types if necessary, handle missing values, and ensure consistency across
columns).

3. Analysis and Insights

460

https://www.kaggle.com/datasets/blastchar/telco-customer-churn
https://drive.google.com/file/d/1rZxaNkcUQ-uC1FsCoAVk0t7zFiJoXBU3/view?usp=drive_link

a. Overall Churn Patterns:
• Determine the overall churn rate in the dataset.

b. Segmented Analysis:
• Calculate the percentage of churned customers across different segments such

as:
– Gender: What proportion of male vs. female customers churn?
– Contract Type: How does the churn rate vary across different contract

types?
– Internet Service: What are the churn rates for customers with DSL,

Fiber optic, or no internet service?
• For each segment (or combination of segments), compute summary statistics

(e.g., counts, averages, medians) for key metrics like MonthlyCharges and
tenure.

c. Advanced Aggregation:
• For each gender, determine summary statistics (mean, median, maximum) for

monthly charges.
• Identify which customer segment or service bundle is associated with the highest

churn rate.

4. Data Visualization

a. Exploratory Visualizations:
• Create a histogram or density plot to visualize the distribution of customer

tenure.
• Develop a bar chart that shows the counts of churned and non-churned cus-

tomers.
b. Comparative Visualizations:

• Construct a boxplot to compare MonthlyCharges across different Contract
types.

• Generate a scatter plot displaying the relationship between tenure and
MonthlyCharges, with points colored by churn status. Consider adding a
trend line if it enhances interpretation.

c. Combined Analysis:
• Filter the dataset to focus on a specific segment (for example, only customers

with ‘Fiber optic’ service) and create additional visualizations (such as a his-
togram of their tenure or a scatter plot of their charges vs. tenure).

• For each unique tenure value, compute the percentage of customers who
churned, and plot these percentages as a line graph.

461

Deliverables

• Code:
Provide your R script or R Markdown file with clear, commented code showing your
data manipulation, analysis, and visualization steps.

• Report:
Write a concise summary that explains:

– Your approach to data cleaning and transformation.
– The key findings from your analysis.
– Insights derived from your visualizations.
– Any recommendations or follow-up questions that your analysis suggests.

11.6 Use Case 1: The Solution

This document analyses the Telco Customer Churn dataset. It covers data import, transfor-
mation, analysis, and visualisation.

Data Manipulation and Transformation

Data Import and Initial Exploration

We begin by loading the required libraries and importing the data.

Load required libraries
library(tidyverse) # For data manipulation and visualisation
library(readxl) # For data import
library(inspectdf) # For inspecting missing values

Set the file path for the Telco Customer Churn dataset
file_path <- "r-data/telco-customer-churn.xlsx"

Read the spreadsheet file into a tibble
telco <- read_xlsx(file_path, sheet = 1)

Explore the dataset structure, summary statistics, and first few rows
glimpse(telco)

462

#> Rows: 2,110
#> Columns: 21
#> $ customer_id <chr> "1452-KIOVK", "6388-TABGU", "9763-GRSKD", "3655-SNQY~
#> $ gender <chr> "Male", "Male", "Male", "Female", "Male", "Female", ~
#> $ senior_citizen <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0~
#> $ partner <chr> "No", "No", "Yes", "Yes", "No", "Yes", "Yes", "Yes",~
#> $ dependents <chr> "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Ye~
#> $ tenure <dbl> 22, 62, 13, 69, 71, 10, 49, 47, 1, 17, 27, 72, 10, 7~
#> $ phone_service <chr> "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Ye~
#> $ multiple_lines <chr> "Yes", "No", "No", "Yes", "Yes", "No", "No", "Yes", ~
#> $ internet_service <chr> "Fiber optic", "DSL", "DSL", "Fiber optic", "Fiber o~
#> $ online_security <chr> "No", "Yes", "Yes", "Yes", "Yes", "No", "Yes", "No",~
#> $ online_backup <chr> "Yes", "Yes", "No", "Yes", "No", "No", "Yes", "Yes",~
#> $ device_protection <chr> "No", "No", "No", "Yes", "Yes", "Yes", "No", "No", "~
#> $ tech_support <chr> "No", "No", "No", "Yes", "No", "Yes", "Yes", "No", "~
#> $ streaming_tv <chr> "Yes", "No", "No", "Yes", "Yes", "No", "No", "Yes", ~
#> $ streaming_movies <chr> "No", "No", "No", "Yes", "Yes", "No", "No", "Yes", "~
#> $ contract <chr> "Month-to-month", "One year", "Month-to-month", "Two~
#> $ paperless_billing <chr> "Yes", "No", "Yes", "No", "No", "No", "No", "Yes", "~
#> $ payment_method <chr> "Credit card (automatic)", "Bank transfer (automatic~
#> $ monthly_charges <dbl> 89.10, 56.15, 49.95, 113.25, 106.70, 55.20, 59.60, 9~
#> $ total_charges <chr> "1949.4", "3487.95", "587.45000000000005", "7895.15"~
#> $ churn <chr> "No", "No", "No", "No", "No", "Yes", "No", "Yes", "Y~

summary(telco)

#> customer_id gender senior_citizen partner
#> Length:2110 Length:2110 Min. :0.00000 Length:2110
#> Class :character Class :character 1st Qu.:0.00000 Class :character
#> Mode :character Mode :character Median :0.00000 Mode :character
#> Mean :0.04313
#> 3rd Qu.:0.00000
#> Max. :1.00000
#> dependents tenure phone_service multiple_lines
#> Length:2110 Min. : 0.00 Length:2110 Length:2110
#> Class :character 1st Qu.:16.00 Class :character Class :character
#> Mode :character Median :39.00 Mode :character Mode :character
#> Mean :38.37
#> 3rd Qu.:62.00
#> Max. :72.00
#> internet_service online_security online_backup device_protection
#> Length:2110 Length:2110 Length:2110 Length:2110

463

#> Class :character Class :character Class :character Class :character
#> Mode :character Mode :character Mode :character Mode :character
#>
#>
#>
#> tech_support streaming_tv streaming_movies contract
#> Length:2110 Length:2110 Length:2110 Length:2110
#> Class :character Class :character Class :character Class :character
#> Mode :character Mode :character Mode :character Mode :character
#>
#>
#>
#> paperless_billing payment_method monthly_charges total_charges
#> Length:2110 Length:2110 Min. : 18.70 Length:2110
#> Class :character Class :character 1st Qu.: 24.50 Class :character
#> Mode :character Mode :character Median : 60.98 Mode :character
#> Mean : 59.52
#> 3rd Qu.: 85.95
#> Max. :118.75
#> churn
#> Length:2110
#> Class :character
#> Mode :character
#>
#>
#>

head(telco)

#> # A tibble: 6 x 21
#> customer_id gender senior_citizen partner dependents tenure phone_service
#> <chr> <chr> <dbl> <chr> <chr> <dbl> <chr>
#> 1 1452-KIOVK Male 0 No Yes 22 Yes
#> 2 6388-TABGU Male 0 No Yes 62 Yes
#> 3 9763-GRSKD Male 0 Yes Yes 13 Yes
#> 4 3655-SNQYZ Female 0 Yes Yes 69 Yes
#> 5 9959-WOFKT Male 0 No Yes 71 Yes
#> 6 4190-MFLUW Female 0 Yes Yes 10 Yes
#> # i 14 more variables: multiple_lines <chr>, internet_service <chr>,
#> # online_security <chr>, online_backup <chr>, device_protection <chr>,
#> # tech_support <chr>, streaming_tv <chr>, streaming_movies <chr>,
#> # contract <chr>, paperless_billing <chr>, payment_method <chr>,

464

#> # monthly_charges <dbl>, total_charges <chr>, churn <chr>

Inspect missing values for each column
telco %>%
inspect_na() %>%
print(n = 21)

#> # A tibble: 21 x 3
#> col_name cnt pcnt
#> <chr> <int> <dbl>
#> 1 total_charges 11 0.521
#> 2 customer_id 0 0
#> 3 gender 0 0
#> 4 senior_citizen 0 0
#> 5 partner 0 0
#> 6 dependents 0 0
#> 7 tenure 0 0
#> 8 phone_service 0 0
#> 9 multiple_lines 0 0
#> 10 internet_service 0 0
#> 11 online_security 0 0
#> 12 online_backup 0 0
#> 13 device_protection 0 0
#> 14 tech_support 0 0
#> 15 streaming_tv 0 0
#> 16 streaming_movies 0 0
#> 17 contract 0 0
#> 18 paperless_billing 0 0
#> 19 payment_method 0 0
#> 20 monthly_charges 0 0
#> 21 churn 0 0

Data Cleaning and Transformation

We transform the churn column into a binary indicator, recode senior_citizen, and create
a new variable service_count to count additional service subscriptions.

Transform Churn to a binary indicator and recode SeniorCitizen for clarity
telco <- telco %>%
mutate(

churn_binary = if_else(churn == "Yes", 1, 0),

465

senior_citizen = if_else(senior_citizen == 1, "Yes", "No")
)

Create a ServiceCount variable to sum additional service subscriptions
telco <- telco %>%
mutate(

phone_service_flag = if_else(phone_service == "Yes", 1, 0),
online_security_flag = if_else(online_security == "Yes", 1, 0),
online_backup_flag = if_else(online_backup == "Yes", 1, 0),
device_protection_flag = if_else(device_protection == "Yes", 1, 0),
tech_support_flag = if_else(tech_support == "Yes", 1, 0),
streaming_tv_flag = if_else(streaming_tv == "Yes", 1, 0),
streaming_movies_flag = if_else(streaming_movies == "Yes", 1, 0),
service_count = phone_service_flag + online_security_flag + online_backup_flag +
device_protection_flag + tech_support_flag + streaming_tv_flag +
streaming_movies_flag

) %>%
Remove temporary flag columns for cleanliness
select(-ends_with("_flag"))

Recoding Additional Demographic and Payment Variables

Recode key demographic variables to enhance interpretability and group similar payment meth-
ods.

Recode SeniorCitizen into SeniorStatus
telco <- telco %>%
mutate(senior_status = if_else(senior_citizen == "Yes", "Senior", "Non-Senior"))

Recode Partner into PartnerStatus
telco <- telco %>%
mutate(partner_status = if_else(partner == "Yes", "Partner", "No Partner"))

Recode Dependents into DependentStatus
telco <- telco %>%
mutate(dependent_status = if_else(dependents == "Yes", "Dependents", "No Dependents"))

Group PaymentMethod into broader categories
telco <- telco %>%
mutate(

payment_method_group = case_when(

466

payment_method == "Electronic check" ~ "Electronic check",
payment_method == "Mailed check" ~ "Mailed check",
str_detect(payment_method, "automatic") ~ "Automatic",
TRUE ~ payment_method # Catch-all for any unexpected values

)
)

Convert all non-numeric columns (except customerID) to factors for clarity
telco <- telco %>%
mutate(across(

.cols = -customer_id, # Exclude customerID column

.fns = ~ if (!is.numeric(.)) as.factor(.) else .
))

Analysis and Insights

Summarise Churn Rates by New Variables

The following summaries show how churn rates vary across demographic and payment
groups.

Churn rate by SeniorStatus
churn_by_senior <- telco %>%
group_by(senior_status) %>%
summarise(

Count = n(),
ChurnRate = mean(churn_binary, na.rm = TRUE) * 100

)

churn_by_senior

#> # A tibble: 2 x 3
#> senior_status Count ChurnRate
#> <fct> <int> <dbl>
#> 1 Non-Senior 2019 15.1
#> 2 Senior 91 24.2

Churn rate by PartnerStatus
churn_by_partner <- telco %>%
group_by(partner_status) %>%

467

summarise(
Count = n(),
ChurnRate = mean(churn_binary, na.rm = TRUE) * 100

)

churn_by_partner

#> # A tibble: 2 x 3
#> partner_status Count ChurnRate
#> <fct> <int> <dbl>
#> 1 No Partner 361 21.3
#> 2 Partner 1749 14.2

Churn rate by DependentStatus
churn_by_dependents <- telco %>%
group_by(dependent_status) %>%
summarise(

Count = n(),
ChurnRate = mean(churn_binary, na.rm = TRUE) * 100

)

churn_by_dependents

#> # A tibble: 1 x 3
#> dependent_status Count ChurnRate
#> <fct> <int> <dbl>
#> 1 Dependents 2110 15.5

Churn rate by PaymentMethodGroup
churn_by_payment <- telco %>%
group_by(payment_method_group) %>%
summarise(

count = n(),
avg_monthly_charges = mean(monthly_charges, na.rm = TRUE),
churn_rate = mean(churn_binary, na.rm = TRUE) * 100

)

churn_by_payment

#> # A tibble: 3 x 4

468

#> payment_method_group count avg_monthly_charges churn_rate
#> <fct> <int> <dbl> <dbl>
#> 1 Automatic 1068 63.5 9.93
#> 2 Electronic check 479 73.6 32.2
#> 3 Mailed check 563 40.0 11.7

Additional Data Analysis

We further explore churn rates across overall, contract, and internet service segments, as well
as summarise monthly charges by gender.

Overall churn rate
overall_churn_rate <- telco %>%
summarise(

Total = n(),
churned = sum(churn_binary, na.rm = TRUE),
churn_rate = churned / Total * 100

)

overall_churn_rate

#> # A tibble: 1 x 3
#> Total churned churn_rate
#> <int> <dbl> <dbl>
#> 1 2110 326 15.5

Churn rate by Contract Type
churn_by_contract <- telco %>%
group_by(contract) %>%
summarise(

count = n(),
avg_monthly_charges = mean(monthly_charges, na.rm = TRUE),
avg_tenure = mean(tenure, na.rm = TRUE),
churn_rate = mean(churn_binary, na.rm = TRUE) * 100

)

churn_by_contract

#> # A tibble: 3 x 5
#> contract count avg_monthly_charges avg_tenure churn_rate
#> <fct> <int> <dbl> <dbl> <dbl>

469

#> 1 Month-to-month 789 62.0 20.5 32.8
#> 2 One year 531 60.6 40.9 9.23
#> 3 Two year 790 56.3 54.5 2.28

Churn rate by Internet Service Type
churn_by_internet <- telco %>%
group_by(internet_service) %>%
summarise(

count = n(),
churnRate = mean(churn_binary, na.rm = TRUE) * 100

)

churn_by_internet

#> # A tibble: 3 x 3
#> internet_service count churnRate
#> <fct> <int> <dbl>
#> 1 DSL 805 11.9
#> 2 Fiber optic 662 30.5
#> 3 No 643 4.35

Summary statistics for MonthlyCharges by Gender
charges_by_gender <- telco %>%
group_by(gender) %>%
summarise(

mean_monthly_charges = mean(monthly_charges, na.rm = TRUE),
median_monthly_charges = median(monthly_charges, na.rm = TRUE),
max_monthly_charges = max(monthly_charges, na.rm = TRUE)

)

charges_by_gender

#> # A tibble: 2 x 4
#> gender mean_monthly_charges median_monthly_charges max_monthly_charges
#> <fct> <dbl> <dbl> <dbl>
#> 1 Female 59.4 61.2 119.
#> 2 Male 59.6 61.0 117.

Identify Contract type with highest churn rate
highest_churn_contract <- churn_by_contract %>%
arrange(desc(churn_rate))

470

highest_churn_contract

#> # A tibble: 3 x 5
#> contract count avg_monthly_charges avg_tenure churn_rate
#> <fct> <int> <dbl> <dbl> <dbl>
#> 1 Month-to-month 789 62.0 20.5 32.8
#> 2 One year 531 60.6 40.9 9.23
#> 3 Two year 790 56.3 54.5 2.28

Data Visualisation

Visualisations help uncover trends and patterns that might not be immediately apparent from
summary tables.

Histogram of Customer Tenure

telco |> ggplot(aes(x = tenure)) +
geom_histogram(binwidth = 5, fill = "steelblue", color = "black") +
labs(title = "Distribution of Customer Tenure", x = "Tenure (months)", y = "Count")

0

100

200

300

0 20 40 60
Tenure (months)

C
ou

nt

Distribution of Customer Tenure

471

Bar Chart of Churn Count by Contract Type

telco |> ggplot(aes(x = contract, fill = churn)) +
geom_bar(position = position_dodge()) +
labs(title = "Churn Count by Contract Type", x = "Contract Type", y = "Count")

0

200

400

600

800

Month−to−month One year Two year
Contract Type

C
ou

nt

churn

No

Yes

Churn Count by Contract Type

Boxplot: MonthlyCharges across Contract Types

telco |> ggplot(aes(x = contract, y = monthly_charges, fill = contract)) +
geom_boxplot() +
labs(title = "Monthly Charges by Contract Type", x = "Contract Type", y = "Monthly Charges")

472

25

50

75

100

Month−to−month One year Two year
Contract Type

M
on

th
ly

 C
ha

rg
es contract

Month−to−month

One year

Two year

Monthly Charges by Contract Type

Scatter Plot: Tenure vs MonthlyCharges coloured by Churn Status

telco |> ggplot(aes(x = tenure, y = monthly_charges, color = churn)) +
geom_point(alpha = 0.6) +
geom_smooth(method = "lm", se = FALSE, color = "black") +
labs(title = "Monthly Charges vs. Tenure by Churn Status", x = "Tenure (months)", y = "Monthly Charges")

#> `geom_smooth()` using formula = 'y ~ x'

473

25

50

75

100

0 20 40 60
Tenure (months)

M
on

th
ly

 C
ha

rg
es

churn

No

Yes

Monthly Charges vs. Tenure by Churn Status

Line Plot: Churn Rate by Tenure

churn_by_tenure <- telco %>%
group_by(tenure) %>%
summarise(

Total = n(),
Churned = sum(churn_binary, na.rm = TRUE),
ChurnRate = Churned / Total * 100

)

churn_by_tenure |> ggplot(aes(x = tenure, y = ChurnRate)) +
geom_line(color = "darkred") +
labs(title = "Churn Rate by Tenure", x = "Tenure (months)", y = "Churn Rate (%)")

474

0

20

40

0 20 40 60
Tenure (months)

C
hu

rn
 R

at
e

(%
)

Churn Rate by Tenure

Histogram: Tenure Distribution for Fibre Optic Customers

fiber_customers <- telco %>% filter(internet_service == "Fiber optic")

fiber_customers |> ggplot(aes(x = tenure)) +
geom_histogram(binwidth = 5, fill = "darkgreen", color = "black") +
labs(title = "Tenure Distribution for Fibre Optic Customers", x = "Tenure (months)", y = "Count")

475

0

50

100

0 20 40 60
Tenure (months)

C
ou

nt
Tenure Distribution for Fibre Optic Customers

Telco Customer Churn Analysis Report

Introduction

This report presents a comprehensive analysis of the Telco Customer Churn dataset, which
contains detailed records of 7,043 customers. The dataset includes demographic information,
account details, service usage metrics, and churn behaviour. Our primary objective is to
identify key drivers of churn and develop actionable recommendations to improve customer
retention. The analysis leverages robust data transformation, exploratory statistics, and visu-
alisation techniques to uncover insights that can guide strategic decision-making.

Data Preparation and Transformation

Our initial steps focused on ensuring data quality and creating new variables to facilitate
deeper insights. We:

• Cleaned the data by converting variables such as TotalCharges into a numeric format
and recoding SeniorCitizen from a binary indicator into a descriptive format.

• Transformed the churn indicator into a binary variable (ChurnBinary), enabling
precise calculation of churn rates.

476

• Derived new metrics like AvgChargePerMonth (TotalCharges divided by tenure) and
ServiceCount (the total number of additional services a customer subscribes to).

• Re-encoded key demographic variables:

– senior_status distinguishes between “Senior” and “Non-Senior” customers.
– partner_status categorises customers as having a partner or not.
– dependent_status identifies whether customers have dependents.

• Grouped payment methods into a new variable (payment_method_group) to com-
pare broad categories: Automatic (including Bank transfer and Credit card), Electronic
check, and Mailed check.

These transformations provided us with a richer dataset that supports more granular analyses
of churn behaviour.

Exploratory Analysis and Key Findings

Overall Churn

Our analysis reveals an overall churn rate of approximately 26.5%. This indicates that about
one in four customers leaves the service, underscoring the need for targeted retention strate-
gies.

Contract Type and Internet Service

• Contract Type:

– Customers on month-to-month contracts experience a markedly high churn rate
of 42.7%.

– In contrast, those on one-year and two-year contracts churn at rates of 11.3%
and 2.8% respectively, suggesting that longer-term commitments are associated
with greater customer loyalty.

• Internet Service:

– Churn rates vary considerably by internet service type.

– Fibre optic customers have a high churn rate of 41.9%, while DSL customers
churn at 19.0%, and those with no internet service exhibit a relatively low churn
rate of 7.4%.

477

These differences indicate that the type of service subscription plays a crucial role in customer
retention. The high churn among fibre optic subscribers may reflect issues with pricing or
service expectations.

Demographic Insights

• Senior Status:

– Among Non-Seniors (5,901 customers), the churn rate is 23.6%.

– In contrast, Seniors (1,142 customers) exhibit a significantly higher churn rate of
41.7%.

– Interpretation: Seniors may face unique challenges or have different expectations
that increase their propensity to leave.

• Partner Status:

– Customers without a partner (3,641 customers) show a churn rate of 33.0%, while
those with a partner (3,402 customers) churn at 19.7%.

– Interpretation: Having a partner may indicate a more stable personal environment,
which could translate into lower churn.

• Dependent Status:

– Customers with dependents (2,110 customers) experience a churn rate of 15.5%,
compared to 31.3% for those without dependents (4,933 customers).

– Interpretation: The presence of dependents appears to be associated with a lower
likelihood of churn, perhaps due to higher commitment levels or differing priorities.

Payment Methods

• Payment Method Group:

– Customers paying via electronic check (2,365 customers) have the highest churn
rate at 45.3% and also incur the highest average monthly charges (£76.3).

– In contrast, those using automatic payment methods (3,066 customers) have a
churn rate of 16.0% with an average monthly charge of £66.9, while mailed
check users (1,612 customers) churn at 19.1% with lower average charges (£43.9).

478

– Interpretation: The elevated churn rate among electronic check users might reflect
higher costs or dissatisfaction with billing, indicating an area for potential interven-
tion.

Visual Insights

Key visualisations further illustrate our findings:

• Tenure Distribution:
A histogram of customer tenure reveals two distinct groups—new customers with very
short tenures and a substantial cohort of long-term customers. This bimodal distribution
suggests that retention strategies may need to be tailored differently for new versus
established customers.

• Churn by Contract Type:
Bar charts clearly show that month-to-month contracts drive the majority of churn,
reinforcing the numerical findings.

• Monthly Charges vs. Tenure:
A scatter plot demonstrates that customers with high monthly charges and short tenures
are particularly prone to churn, highlighting the need for early intervention among this
group.

• Churn Rate by Tenure:
A line graph indicates that the churn rate declines steadily as tenure increases, empha-
sising the importance of retaining customers during the critical early months of service.

Recommendations

Based on these insights, we propose the following strategic recommendations:

1. Target Month-to-Month Subscribers:

• Implement loyalty programmes or incentivise longer-term contracts to reduce the
high churn rate in this segment.

2. Focus on Fibre Optic Subscribers:

• Investigate the underlying causes of high churn among fibre optic users, such as
pricing or service quality issues, and consider targeted offers to enhance value per-
ception.

3. Enhanced Engagement for Senior Customers:

479

• Develop tailored engagement initiatives for senior customers, who are significantly
more likely to churn. This could include specialised support, personalised commu-
nication, or alternative service plans.

4. Review Payment Options:

• Explore why customers using electronic checks are experiencing high churn and con-
sider adjusting billing practices or offering alternative payment methods to improve
satisfaction.

5. Early Intervention Strategies:

• For new customers, especially those with high initial monthly charges, introduce
proactive onboarding measures and personalised offers to encourage longer-term
commitments.

Conclusion

The analysis indicates that while the overall churn rate stands at about 26.5%, particular
customer segments—such as those on month-to-month contracts, fibre optic subscribers, senior
customers, and users of electronic check payment methods—exhibit significantly higher churn
rates. Addressing these vulnerabilities through targeted retention strategies and improved
customer engagement will be crucial in reducing churn and enhancing long-term profitability.

11.7 Exercise 11.1: Analyzing a Rape Survey for the Federal
Government of Nigeria

11.7.1 Project Overview

You have been engaged by the Federal Government of Nigeria to analyse a sensitive dataset
about rape incidents gathered from a national survey in Lagos. Without explicit instructions,
your task is to apply your data analysis and visualisation skills to uncover insights that may
inform policy decisions, resource allocation, or awareness campaigns.

11.7.2 The Dataset

Locate the rape-survey.xlsx file in the r-data directory. If you don’t already have the file,
you can download it from Google Drive.

480

https://docs.google.com/spreadsheets/d/1mh2h_-mug53l4z-4Ya0ZzEWnbc1ilrDo

11.7.3 Your Task

• Data Preparation: Import and clean the data, addressing missing values, verifying
data formats, and ensuring variables align with analytical goals.

• Exploratory Analysis: Understand distributions of key variables, identify patterns or
risk factors, and discover regional or demographic differences.

• Visualisation: Use bar charts, boxplots, or heatmaps to highlight differences among
groups, time periods, or severity levels.

• Insights and Recommendations:
Present findings in a concise, data-driven narrative. Consider ethical sensitivities when
interpreting results. Provide recommendations that might guide policy, resource invest-
ment, or public education efforts.

11.8 Integrating Lab Skills

In previous labs, you learned how to organise projects (Lab 4), wrangle data (Lab 5 and Lab 6),
visualise insights (Lab 7), and understand the broader data science field (Lab 10). Applying
these techniques to real projects consolidates your skillset:

• Organisational Skills: Maintain reproducible workflows to ensure credibility and trace-
ability.

• Data Wrangling: Tidy and transform datasets to facilitate smooth analysis and mod-
elling.

• Visualisation: Create plots that reveal patterns, trends, or anomalies, guiding decision-
makers effectively.

• Statistical and Analytical Rigor: Use tests and models judiciously, validating as-
sumptions and ensuring insights are robust.

Note

Reflection Question
Having seen how individual techniques fit into larger projects, how does this perspective
influence the way you approach learning new analytical methods or tools?

481

11.9 Conclusion and Further Steps

Use case projects are where R’s capabilities truly shine. By applying your skills to realistic
scenarios, you cultivate problem-solving abilities, enhance creativity, and build confidence.
Beyond academic exercises, these projects mirror professional tasks you might encounter in
workplaces or research settings.

Next Steps:

• Continue seeking or designing new use case projects to keep skills sharp and current.

• Explore complex datasets, integrate more advanced modelling techniques, or experiment
with interactive dashboards.

• Share your results publicly (in blogs, portfolios, or open-source contributions) to receive
feedback and build a professional presence.

Note

Reflection Question:
As you move forward, what kind of real-world projects are you most interested in tackling,
and how will these projects shape your future growth as a data professional?

11.10 General Practice Quiz 11

Question 1:

What is the main purpose of the pipe operator |> in R?

a) To run code in parallel.

b) To nest functions inside one another.

c) To pass the output of one function as the input to the next, improving code readability.

d) To automatically clean missing data.

Question 2:

In a reproducible R workflow (as discussed in early labs), which file type is commonly used to
document code, results, and narrative together?

a) CSV files

482

b) R Markdown (or Quarto) documents

c) PNG images

d) Excel spreadsheets

Question 3:

When creating a new RStudio Project to ensure reproducibility and organisation of your
analysis, what is one key advantage?

a) It automatically generates a machine learning model.

b) It sets the working directory to the project folder, simplifying relative paths.

c) It prevents all missing values.

d) It disables package installation from CRAN.

Question 4:

The principle of tidy data states that:

a) Each dataset should have no missing values.

b) Each column represents a variable, each row represents an observation, and each cell
contains a single value.

c) Each dataset must have at least 10 columns.

d) Each value in the dataset must be numeric.

Question 5:

Which dplyr verb is used to filter rows based on logical conditions?

a) select()

b) mutate()

c) filter()

d) summarise()

Question 6:

To create new columns or modify existing ones in your dataset using dplyr, you would use:

483

a) select()

b) mutate()

c) arrange()

d) group_by()

Question 7:

Which ggplot2 component maps data variables to visual properties like axes, colour, or size?

a) Theme

b) Facets

c) Aesthetics (aes())

d) Scales

Question 8:

To reorder rows of data based on a variable’s value using dplyr, which function should be
applied?

a) rename()

b) arrange()

c) distinct()

d) count()

Question 9:

In the data science lifecycle discussed, which stage primarily involves creating charts, graphs,
or other graphical representations of data?

a) Import

b) Tidy

c) Transform

d) Visualise

484

Question 10:

What is the role of group_by() in conjunction with summarise()?

a) It imports a dataset from the internet.

b) It filters rows based on conditions.

c) It splits the data into groups, allowing summarised statistics per group.

d) It changes variable names.

Question 11:

When exploring data from a new dataset, which of the following is a best practice?

a) Immediately running complex models without understanding distributions.

b) Creating exploratory visualisations and computing descriptive statistics.

c) Ignoring missing values.

d) Never using glimpse() or head().

Question 12:

Which ggplot2 function would you use to create a boxplot?

a) geom_bar()

b) geom_point()

c) geom_boxplot()

d) geom_smooth()

Question 13:

Converting code, analysis, and narrative into a single reproducible document is commonly
achieved with:

a) read_csv() only.

b) Proprietary binary formats.

c) R Markdown (or Quarto) documents.

485

d) Manually copying results into Word documents.

Question 14:

Which operator in R is used to chain data operations in a logical sequence, making code more
readable?

a) %>% (from magrittr) or |> (native pipe)

b) $

c) *

d) =

Question 15:

Data science is often described as an intersection of three main areas. Which combination is
correct?

a) Domain expertise, mathematics/statistics, and computer science/programming.

b) Chemistry, physics, and biology.

c) Finance, marketing, and sales.

d) Geography, history, and literature.

Question 16:

In a data science project, why is communicating findings effectively so important?

a) It ensures the code runs faster.

b) It guarantees no missing values remain.

c) It enables stakeholders to understand insights and make informed decisions.

d) It replaces the need for data transformations.

Question 17:

When dealing with missing data, which is NOT a recommended strategy?

a) Identifying and quantifying missing values.

486

b) Imputing values using mean or median if appropriate.

c) Removing all data points and ignoring the missingness context.

d) Documenting how missing data was handled.

Question 18:

Which dplyr function extracts unique rows or identifies distinct values?

a) distinct()

b) rename()

c) relocate()

d) case_when()

Question 19:

Why are use case projects invaluable for learners transitioning from theory to practice?

a) They allow bypassing basic R syntax rules.

b) They simplify code without testing problem-solving skills.

c) They help integrate various skills, face real-world challenges, and deepen understanding.

d) They remove the need for documentation.

Question 20:

In the data science lifecycle, what is typically the final stage?

a) Model

b) Communicate

c) Tidy

d) Transform

See the Solution to General Quiz 11

487

11.11 Reflective Summary

In Lab 11, you learned the importance of use case projects for mastering R and data analysis
techniques. By engaging with real-world scenarios, you:

• Applied Theoretical Knowledge in Practice: Transitioned from isolated exercises
to comprehensive, problem-focused projects.

• Enhanced Problem-Solving Skills: Overcame practical challenges, honed trou-
bleshooting abilities, and adapted solutions.

• Developed a Holistic Understanding: Integrated data wrangling, visualisation, re-
producibility, and analysis into cohesive workflows.

• Built Confidence and Portfolios: Gained assurance in your skills, creating tangible
proof of your capabilities.

• Reinforced Ethical and Contextual Thinking: Appreciated the responsibilities and
sensitivities required when working with real and potentially sensitive datasets.

These experiences lay the groundwork for your continued development as a data analyst or data
scientist. As you tackle increasingly complex projects, remember that every dataset presents
an opportunity to refine your methods, discover insights, and communicate stories that inform
real-world decisions.

Congratulations on completing the last lab in this book! You have now demonstrated your
ability to apply R skills and data science principles in practical contexts, setting the stage for
more advanced, specialised, and impactful data analyses in the future.

488

A Solutions

Lab 1: Getting Started with R

Solution Quiz 1.1

Question 1:

What is the primary role of R in the R programming environment?

a) A user interface for writing code

b) A programming language for statistical computing 3

c) A package manager

d) A data visualization tool

Question 2:

Which of the following best describes RStudio?

a) A standalone programming language

b) A text editor for writing R scripts

c) An Integrated Development Environment (IDE) for R 3

d) A package repository for R

Question 3:

Which of the following is the correct sequence of steps to install R and RStudio on your
computer?

a) Install RStudio first, then install R from the CRAN website.

b) Install R from the CRAN website first, then install RStudio. 3

489

c) Download both R and RStudio from the RStudio website and install them simultane-
ously.

d) Install R from the Microsoft Store, then install RStudio from the CRAN website.

Question 4:

Which keyboard shortcut runs the current line of code in RStudio on Windows?

a) Ctrl + S

b) Ctrl + Enter 3

c) Alt + R

d) Shift + Enter

Question 5:

After successful installation, which pane in RStudio indicates that R is ready to use?

a) Source Pane

b) Console Pane 3

c) Environment Pane

d) Files Pane

Return to Quiz 1.1

Solution Quiz 1.2

Question 1:

Which pane in RStudio is primarily used for writing and editing R scripts?

a) Console Pane

b) Source Pane 3

c) Environment Pane

d) Files Pane

490

Question 2:

What does the Environment Tab in RStudio display?

a) Available packages and their statuses

b) Active variables, data frames, and objects in the current session 3

c) The file directory of your project

d) Graphical plots and visualizations

Question 3:

How can you execute a selected block of code in the Source Pane?

a) Press Ctrl + S

b) Press Ctrl + Enter

c) Click the “Run” button

d) Both b) and c) 3

Question 4:

Which pane would you use to install and load R packages?

a) Source Pane

b) Console Pane

c) Files Pane

d) Packages Tab within Files/Plots/Packages/Help Pane 3

Question 5:

Where can you find R’s built-in documentation and help files within RStudio?

a) Source Pane

b) Console Pane

491

c) Environment Pane

d) Help Tab within Files/Plots/Packages/Help Pane 3

Return to Quiz 1.2

Solution 1.2.1: Basic Calculations

2 + 6 - 12

#> [1] -4

4 * 3 - 8

#> [1] 4

81 / 6

#> [1] 13.5

16 %% 3

#> [1] 1

2^3

#> [1] 8

(3 + 2) * (6 - 4) + 2

#> [1] 12

Try changing the numbers or operations in the calculations above to see different results.
This hands-on experimentation will deepen your understanding of how R processes arithmetic
operations.

Return to Exercise 1.2.1

492

Solution 1.3.1: A Quick Hands-On

Try it yourself! Create a variable called my_name and assign your name to it. Then, print a
greeting that says “Hello, [Your Name]!”.

my_name <- "Alice"
print(paste("Hello,", my_name, "!"))

#> [1] "Hello, Alice !"

You can also use the following:

my_name <- "Alice"

cat("Hello,", my_name, "!")

#> Hello, Alice !

Return to Exercise 1.3.1

Solution Quiz 1.3

Question 1:

Which function is used to determine the class of an object in R?

a) vector()

b) c()

c) class() 3

d) typeof()

Question 2:

What will the class of the following object be in R?

my_var <- TRUE

a) numeric

493

b) character

c) logical 3

d) complex

Question 3:

Which of the following is an acceptable variable name in R?

a) 2nd_place

b) total-sales

c) average_height 3

d) user name

Question 4:

How can you convert a character string "123" to a numeric type in R?

a) to.numeric("123")

b) as.numeric("123") 3

c) convert("123", "numeric")

d) numeric("123")

Question 5:

What will be the result of the following R code?

weight <- "60.4 kg"
weight_numeric <- as.numeric(weight)

a) 60.4

b) "60.4"

c) NA with a warning 3

d) NULL

Return to Quiz 1.3

494

Solution 1.3.3: Variable Assignment and Data Types

age <- 15

class(age)

#> [1] "numeric"

weight <- "60.4 kg"

class(weight)

#> [1] "character"

weight_numeric <- as.numeric(gsub(" kg", "", weight))

class(weight_numeric)

#> [1] "numeric"

smile_face <- "FALSE"

class(smile_face)

#> [1] "character"

smile_face_logical <- as.logical(smile_face)

class(smile_face_logical)

#> [1] "logical"

Return to Exercise 1.3.3

495

Solution Quiz 1.4

Question 1:

What will be the output of the following R code?

number <- 10
if (number %% 2 == 0) {
print("Even")

} else {
print("Odd")

}

a) Odd

b) Even 3

c) TRUE

d) FALSE

Question 2:

Which logical operator in R returns TRUE only if both conditions are TRUE?

a) | (OR)

b) & (AND) 3

c) ! (NOT)

d) ^ (XOR)

Question 3:

In the switch() function, what does the following code return when choice is 3?

num1 <- 10
num2 <- 5
choice <- 3

result <- switch(choice,
num1 + num2,
num1 - num2,
num1 * num2,

496

"Invalid operation"
)

print(result)

a) 15

b) 5

c) 50 3

d) "Invalid operation"

Question 4:

What is the purpose of including a default case in a switch() statement?

a) To handle cases where the expression matches multiple conditions

b) To execute a block of code if none of the specified cases match 3

c) To prioritize certain cases over others

d) To initialize variables within the switch

Question 5:

Which of the following uses the NOT (!) operator correctly in an if statement?

a)

if (!c) {
print("The condition is false")

}

b)

if (c!) {
print("The condition is false")

}

c)

497

if (c != TRUE) {
print("The condition is false")

}

d) Both a) and c) 3

Return to Quiz 1.4

Solution 1.4.1: Conditional Statements

Task 1

number <- 10

if (number %% 2 == 0) {
print("Even")

} else {
print("Odd")

}

#> [1] "Even"

Answer: "Even" because 10 %% 2 == 0 evaluates to TRUE.

m <- 5

n <- 7

if (m > n) {
print("m is greater than n")

} else if (m < n) {
print("m is less than n")

} else {
print("m and n are equal")

}

#> [1] "m is less than n"

Return to Exercise 1.4.1

498

Solution 1.4.2: Menu Selection Using switch()

Use the switch() Function:

option <- "exit"

message <- switch(option,
balance = "Your current balance is $1,000.",
deposit = "Enter the amount you wish to deposit.",
withdraw = "Enter the amount you wish to withdraw.",
exit = "Thank you for using our banking services.",
"Invalid selection. Please choose a valid option."

)

Display the Message:

print(message)

#> [1] "Thank you for using our banking services."

Change the value of option to test different menu selections and observe the outputs.

Return to Exercise 1.4.2

Solution 1.4.3: Mini-Project - Basic Calculator in R

Get user input

num1 <- as.numeric(readline(prompt = "Enter the first number: ")) # You entered 15

num2 <- as.numeric(readline(prompt = "Enter the second number: ")) # You entered 5

operation <- readline(prompt = "Choose an operation (+, -, *, /): ") # You chose +

Perform calculation

result <- switch(operation,
"+" = num1 + num2,
"-" = num1 - num2,
"*" = num1 * num2,

499

"/" = if (num2 != 0) num1 / num2 else "Error: Division by zero",
"Invalid operation"

)
Display result
print(paste("The result is:", result))

#> [1] "The result is: 20"

Return to Exercise 1.4.3

Lab 2: Understanding Data Structures

Reflection Solution 2.1.1

Why is it important to know that R uses 1-based indexing?

Answer: Because starting from 1 affects how you access elements; forgetting this can lead to
off-by-one errors.

Return to Reflection Question 2.1.1

Solution 2.1.1: Vector Selection

Task 1: Create the vector
monthly_sales <- c(120, 135, 150, 160, 155, 145, 170, 180, 165, 175, 190, 200)

Task 2: Access sales for March, June, and December
sales_selected_months <- monthly_sales[c(3, 6, 12)]
sales_selected_months

#> [1] 150 145 200

Task 3: Access sales that are less than 60
sales_lessthan_60 <- monthly_sales[monthly_sales < 60]
sales_lessthan_60

#> numeric(0)

500

Task 4: Calculate average sales for the first quarter
first_quarter_sales <- monthly_sales[1:3]

average_first_quarter <- mean(first_quarter_sales)
average_first_quarter

#> [1] 135

Task 5: Extract the sales figures for the last month of each quarter of the year
quarter_last_months <- monthly_sales[c(3, 6, 9, 12)]
quarter_last_months

#> [1] 150 145 165 200

Return to Exercise 2.1.1

Reflection Solution 2.1.2

• How does converting character vectors to factors benefit data analysis in R?

Answer: Converting character vectors to factors benefits data analysis by:

– Ensuring data integrity through predefined categories.

– Improving efficiency in storage and computation.

– Allowing statistical functions to correctly interpret and handle categorical variables.

• When would you use a factor instead of a character vector in R?

Answer: Use a factor when working with categorical data that have a fixed set of possible
values, especially when you plan to perform statistical analyses or modelling that treat
categories differently than continuous data.

Return to Reflection Question 2.1.2

501

Solution Quiz 2.1

Question 1:

Which function is used to create a vector in R?

a) vector()

b) c() 3

c) list()

d) data.frame()

Question 2:

Given the vector:

v <- c(2, 4, 6, 8, 10)

What is the result of v * 3?

a) c(6, 12, 18, 24, 30) 3

b) c(2, 4, 6, 8, 10, 3)

c) c(6, 12, 18, 24)

d) An error occurs

Question 3:

In R, is the vector c(TRUE, FALSE, TRUE) considered a numeric vector?

a) True
b) False 3

Question 4:

What will be the output of the following code?

numbers <- c(1, 3, 5, 7, 9)
numbers[2:4]

a) 1, 3, 5

502

b) 3, 5, 7 3

c) 5, 7, 9

d) 2, 4, 6

Question 5:

Which of the following best describes a factor in R?

a) A numerical vector

b) A categorical variable with predefined levels 3

c) A two-dimensional data structure

d) A list of vectors

Question 6:

Which function is used to create sequences including those with either integer or non-integer
steps?

a) :

b) seq() 3

c) rep()

d) sample()

Question 7:
What does the following code output?

seq(10, 1, by = -3)

a) 10, 7, 4, 1 3

b) 10, 7, 4

c) 1, 4, 7, 10

d) An error occurs

503

Question 8:

Suppose you want to create a vector that repeats the sequence 1, 2, 3 five times. Which
code will achieve this?

a) rep(c(1, 2, 3), each = 5)

b) rep(c(1, 2, 3), times = 5) 3

c) rep(1:3, times = 5)

d) rep(1:3, each = 5)

Question 9:

Suppose you are drawing coins from a treasure chest. There are 100 coins in this chest: 20 gold,
30 silver, and 50 bronze. Use R to draw 5 random coins from the chest. Use set.seed(50)
to ensure reproducibility.

What will be the output of the random draw?

Code:

set.seed(50)
coins <- c(rep("Gold", 20), rep("Silver", 30), rep("Bronze", 50))
draw <- sample(coins, size = 5, replace = TRUE)
draw

#> [1] "Gold" "Bronze" "Bronze" "Bronze" "Silver"

a) Silver, Bronze, Bronze, Bronze, Silver

b) Gold, Gold, Silver, Bronze, Bronze

c) Gold, Bronze, Bronze, Bronze, Silver 3

d) Silver, Bronze, Gold, Bronze, Bronze

Question 10:

What will the following code produce?

c(1, 2, 3) + c(4, 5)

a) 5, 7, 8

504

b) 5, 7, 7 3

c) An error due to unequal vector lengths

d) 5, 7, 9

Explanation:

• The shorter vector c(4, 5) is recycled to match the length of the longer vector
c(1, 2, 3).

• After recycling, c(4, 5) becomes c(4, 5, 4).

• The addition is performed element-wise:

– 1 + 4 = 5

– 2 + 5 = 7

– 3 + 4 = 7

• The result is c(5, 7, 7).

This question introduces the concept of vector recycling in R.

Return to Quiz 2.1

Solution 2.1.2: Vector and Factor Manipulation

Task 1: Create the vector
feedback_ratings <- c("Good", "Excellent", "Poor", "Fair", "Good", "Excellent", "Fair")

Task 2: Convert to ordered factor
feedback_factors <- factor(feedback_ratings,
levels = c("Poor", "Fair", "Good", "Excellent"),
ordered = TRUE

)

Task 3: Summarize feedback ratings
summary(feedback_factors)

#> Poor Fair Good Excellent
#> 1 2 2 2

505

Task 4: Count of "Excellent" ratings
excellent_count <- sum(feedback_factors == "Excellent")
excellent_count

#> [1] 2

Return to Exercise 2.1.2

Solution 2.2.1: Matrix Transpose

Define matrix A

A <- matrix(c(1, 3, 5, 2, 4, 6), nrow = 2, ncol = 3, byrow = TRUE)

A_transpose <- t(A)

Return to Exercise 2.2.1

Solution 2.2.2: Matrix Inverse Multiplication

Define matrices A and B
A <- matrix(c(4, 7, 2, 6), nrow = 2, ncol = 2, byrow = TRUE)

B <- matrix(c(3, 5, 1, 2), nrow = 2, ncol = 2, byrow = TRUE)

Find the inverse of A
A_inverse <- solve(A)

Multiply A_inverse by B
result <- A_inverse %*% B

Return to Exercise 2.2.2

506

Solution Quiz 2.2

Question 1:

Which R function is used to find the transpose of a matrix?

a) transpose()

b) t() 3

c) flip()

d) reverse()

Question 2:

Given the matrix:

A <- matrix(1:6, nrow = 2, byrow = TRUE)

what is the value of A[2, 3]?

a) 3

b) 6 3

c) 5

d) 4

Question 3:

True or False: Matrix multiplication in R can be performed using the * operator.

a) True

b) False 3

Matrix multiplication is performed using the %*% operator.

Question 4:

What will be the result of adding two matrices of different dimensions in R?

a) R will perform element-wise addition up to the length of the shorter matrix.

b) An error will occur due to dimension mismatch. 3

507

c) R will recycle elements of the smaller matrix.

d) The matrices will be concatenated.

Question 5:

Which function can be used to calculate the sum of each column in a matrix M?

a) rowSums(M)

b) colSums(M) 3

c) sum(M)

d) apply(M, 2, sum)

Question 6:

Which function is used to create a matrix in R?

a) matrix() 3

b) data.frame()

c) c()

d) list()

Return to Quiz 2.2

Solution 2.3.1: Subsetting a Dataframe

1. Examine the airquality dataset

head(airquality) # Shows the first 6 rows by default

#> Ozone Solar.R Wind Temp Month Day
#> 1 41 190 7.4 67 5 1
#> 2 36 118 8.0 72 5 2
#> 3 12 149 12.6 74 5 3
#> 4 18 313 11.5 62 5 4
#> 5 NA NA 14.3 56 5 5
#> 6 28 NA 14.9 66 5 6

508

#|
View(airquality) # Opens dataset in a spreadsheet-like viewer (if in RStudio)

Figure A.1: Airquality Data Frame Preview in RStudio

str(airquality) # Display the structure of the dataset

#> 'data.frame': 153 obs. of 6 variables:
#> $ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
#> $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
#> $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
#> $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
#> $ Month : int 5 5 5 5 5 5 5 5 5 5 ...
#> $ Day : int 1 2 3 4 5 6 7 8 9 10 ...

summary(airquality) # Gives summary statistics for each column

#> Ozone Solar.R Wind Temp
#> Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00
#> 1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00
#> Median : 31.50 Median :205.0 Median : 9.700 Median :79.00
#> Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88
#> 3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00

509

#> Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00
#> NA's :37 NA's :7
#> Month Day
#> Min. :5.000 Min. : 1.0
#> 1st Qu.:6.000 1st Qu.: 8.0
#> Median :7.000 Median :16.0
#> Mean :6.993 Mean :15.8
#> 3rd Qu.:8.000 3rd Qu.:23.0
#> Max. :9.000 Max. :31.0
#>

#|
2. Select the first three columns (columns 1, 2, and 3)
airquality[, 1:3]

#> Ozone Solar.R Wind
#> 1 41 190 7.4
#> 2 36 118 8.0
#> 3 12 149 12.6
#> 4 18 313 11.5
#> 5 NA NA 14.3
#> 6 28 NA 14.9

Note

For clarity and conciseness, we have shortened the output to include only six rows.

3. Select rows 1 to 3, and columns 1 and 3
airquality[1:3, c(1, 3)]

#> Ozone Wind
#> 1 41 7.4
#> 2 36 8.0
#> 3 12 12.6

4. Select rows 1 to 5, and column 1
airquality[1:5, 1]

#> [1] 41 36 12 18 NA

510

5. Select the first row
airquality[1,]

#> Ozone Solar.R Wind Temp Month Day
#> 1 41 190 7.4 67 5 1

6. Select the first 6 rows
airquality[1:6,]

#> Ozone Solar.R Wind Temp Month Day
#> 1 41 190 7.4 67 5 1
#> 2 36 118 8.0 72 5 2
#> 3 12 149 12.6 74 5 3
#> 4 18 313 11.5 62 5 4
#> 5 NA NA 14.3 56 5 5
#> 6 28 NA 14.9 66 5 6

Return to Exercise 2.3.1

Solution 2.2.3: Matrix Operations

Sales data (units sold)

sales_data <- c(500, 600, 550, 450, 620, 580, 610, 490, 530, 610, 570, 480)

Create a matrix

sales_matrix <- matrix(sales_data, nrow = 4, ncol = 3, byrow = TRUE)

colnames(sales_matrix) <- c("Product_A", "Product_B", "Product_C")

rownames(sales_matrix) <- c("Region_1", "Region_2", "Region_3", "Region_4")

sales_matrix

#> Product_A Product_B Product_C
#> Region_1 500 600 550
#> Region_2 450 620 580
#> Region_3 610 490 530
#> Region_4 610 570 480

511

Task 1: Total units sold per product
total_units_per_product <- colSums(sales_matrix)

total_units_per_product

#> Product_A Product_B Product_C
#> 2170 2280 2140

Task 2: Average units sold for Product_A
average_product_a <- mean(sales_matrix[, "Product_A"])
average_product_a

#> [1] 542.5

Task 3: Region with highest sales for Product_C
max_sales_product_c <- max(sales_matrix[, "Product_C"])
region_highest_sales <- rownames(sales_matrix)[which(sales_matrix[, "Product_C"] == max_sales_product_c)]
region_highest_sales # Returns the region name

#> [1] "Region_2"

Return to Exercise 2.2.3

Solution Quiz 2.3

Question 1:

Which function would you use to view the structure of a data frame, including its data types
and a preview of its contents?

a) head()

b) str() 3

c) summary()

d) names()

Question 2:

How do you access the third row and second column of a data frame df?

512

a) df[3, 2] 3

b) df[[3, 2]]

c) df$3$2

d) df(3, 2)

Question 3:

In a data frame, all columns must contain the same type of data.

a) True

b) False 3

Question 4:

Which of the following commands would open a spreadsheet-style viewer of the data frame df
in RStudio?

a) View(df) 3

b) view(df)

c) inspect(df)

d) display(df)

Question 5:

What does the summary() function provide when applied to a data frame?

a) Only the first few rows of the data frame.

b) Descriptive statistics for each column. 3

c) The structure of the data frame including data types.

d) A visual plot of the data.

Answer: B

Question 6:

In a data frame, all columns must be of the same data type.

513

a) True

b) False 3

Return to Quiz 2.3

Solution 2.3.2: Data Frame Manipulation

Sample sales transactions
transaction_id <- 1:5

product <- c("Product_A", "Product_B", "Product_C", "Product_A", "Product_B")

quantity <- c(2, 5, 1, 3, 4)

price <- c(19.99, 5.49, 12.89, 19.99, 5.49)

total_amount <- quantity * price

sales_transactions <- data.frame(transaction_id, product, quantity, price, total_amount)

sales_transactions

#> transaction_id product quantity price total_amount
#> 1 1 Product_A 2 19.99 39.98
#> 2 2 Product_B 5 5.49 27.45
#> 3 3 Product_C 1 12.89 12.89
#> 4 4 Product_A 3 19.99 59.97
#> 5 5 Product_B 4 5.49 21.96

Task 1: Add 'discounted_price' column
sales_transactions$discounted_price <- sales_transactions$price * 0.9
sales_transactions

#> transaction_id product quantity price total_amount discounted_price
#> 1 1 Product_A 2 19.99 39.98 17.991
#> 2 2 Product_B 5 5.49 27.45 4.941
#> 3 3 Product_C 1 12.89 12.89 11.601
#> 4 4 Product_A 3 19.99 59.97 17.991
#> 5 5 Product_B 4 5.49 21.96 4.941

514

Task 2: Filter transactions with 'total_amount' > $50
high_value_transactions <- sales_transactions[sales_transactions$total_amount > 50,]
high_value_transactions

#> transaction_id product quantity price total_amount discounted_price
#> 4 4 Product_A 3 19.99 59.97 17.991

Task 3: Average 'total_amount' for 'Product_B'
product_b_transactions <- sales_transactions[sales_transactions$product == "Product_B",]
average_total_amount_b <- mean(product_b_transactions$total_amount)
average_total_amount_b

#> [1] 24.705

Return to Exercise 2.3.2

Solution Quiz 2.4

Question 1:

Which function is used to create a list in R?

a) c()

b) list() 3

c) data.frame()

d) matrix()

Question 2:

Given the list:

L <- list(a = 1, b = "text", c = TRUE)

how would you access the element "text"?

a) L[2]

b) L["b"]

515

c) L$b

d) Both b) and c) 3

Question 3:

Using single square brackets [] to access elements in a list returns the element itself, not a
sublist.

a) True

b) False 3

Using single [] returns a sublist, while double [[]] returns the element itself.

Question 4:

How can you add a new element named d with value 3.14 to the list L?

a) L$d <- 3.14

b) L["d"] <- 3.14

c) L <- c(L, d = 3.14)

d) All of the above 3

Question 5:

What will be the result of length(L) if

L <- list(a = 1, b = "text", c = TRUE, d = 3.14)?

a) 3

b) 4 3

c) 1

d) 0

Return to Quiz 2.4

516

Solution 2.4.1: Working with Lists

Create the list
product_details <- list(
product_id = 501,
name = "Wireless Mouse",
specifications = list(

color = "Black",
battery_life = "12 months",
connectivity = "Bluetooth"

),
in_stock = TRUE

)

Access elements
product_details$product_id

#> [1] 501

product_details$name

#> [1] "Wireless Mouse"

product_details$in_stock

#> [1] TRUE

Access nested list
product_details$specifications$color

#> [1] "Black"

product_details$specifications$connectivity

#> [1] "Bluetooth"

Return to Exercise 2.4.1

517

General Solution Quiz 2

Question 1

Which function is used to create a vector in R?

a) vector()

b) c() 3

c) list()

d) data.frame()

Question 2

Which function is used to create a matrix in R?

a) array()

b) list()

c) matrix() 3

d) data.frame()

Question 3

Which function is used to create an array in R?

a) list()

b) matrix()

c) c()

d) array() 3

Question 4

Which function is used to create a list in R?

a) list() 3

b) c()

518

c) matrix()

d) data.frame()

Question 5

A matrix in R must contain elements of:

a) Multiple data types (e.g., numeric and character mixed)

b) Only character type

c) Only logical type

d) The same type (all numeric, all logical, etc.) 3

Question 6

An array in R can be:

a) Only two-dimensional

b) Only one-dimensional

c) Two-dimensional or higher 3

d) Unlimited in one dimension only

Question 7

A list in R is considered:

a) Two-dimensional

b) One-dimensional 3

c) Multi-dimensional

d) A type of matrix

Question 8

Which of the following is true about a list?

a) It can only contain numeric data

519

b) It stores data with rows and columns by default

c) It can store multiple data types in different elements 3

d) It must be strictly two-dimensional

Question 9

What is the most suitable structure for storing heterogeneous data (e.g., numbers, characters,
and even another data frame) in a single R object?

a) Vector

b) Matrix

c) Array

d) List 3

Question 10

How do we typically check the “size” of a list in R?

a) nrow()

b) length() 3

c) dim()

d) ncol()

Question 11

Which function is used to create a data frame in R?

a) data.frame() 3

b) array()

c) c()

d) list()

Question 12

A data frame in R:

520

a) Must be strictly numeric

b) Can store different data types in each column 3

c) Is always one-dimensional

d) Is identical to a matrix

Question 13

If you want to assign dimension names to an array, you should use:

a) rownames() only

b) colnames() only

c) dimnames() 3

d) names()

Question 14

When creating a matrix using:

matrix(1:6, nrow = 2, ncol = 3, byrow = TRUE)

How are the elements placed?

a) Filled by columns first

b) Filled by rows first 3

c) Randomly placed

d) Not possible to tell

Question 15

In an array with dimensions c(2, 3, 4), how many elements are there in total?

a) 12

b) 18

521

c) 24 3

d) 36

Return to General Quiz 2

Lab 3: Writing Custom Function

Solution 3.1.1: Temperature Conversion

celsius_to_fahrenheit <- function(celsius) {
fahrenheit <- celsius * 1.8 + 32
return(fahrenheit)

}

Testing the function
celsius_to_fahrenheit(100)

#> [1] 212

celsius_to_fahrenheit(75)

#> [1] 167

celsius_to_fahrenheit(120)

#> [1] 248

Return to Exercise 3.1.1

Solution 3.1.2: Pythagoras Theorem

522

pythagoras <- function(a, b) {
c <- sqrt(a^2 + b^2)
return(c)

}

Testing the function
pythagoras(3, 4)

#> [1] 5

pythagoras(4.1, 2.6)

#> [1] 4.854894

Return to Exercise 3.1.2

Solution 3.1.3: Staff Data Manipulation Using switch()

library(tidyverse)

#> -- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
#> v dplyr 1.1.4 v readr 2.1.5
#> v forcats 1.0.0 v stringr 1.5.1
#> v ggplot2 3.5.1 v tibble 3.2.1
#> v lubridate 1.9.3 v tidyr 1.3.1
#> v purrr 1.0.2
#> -- Conflicts -- tidyverse_conflicts() --
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
#> i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Sample employee data
staff_data <- data.frame(
EmployeeID = 1:6,
Name = c("Alice", "Ebunlomo", "Festus", "Othniel", "Bob", "Testimony"),
Department = c("HR", "IT", "Finance", "Data Science", "Marketing", "Finance"),
Salary = c(70000, 80000, 75000, 82000, 73000, 78000)

)

523

data_frame_operation <- function(data, operation) {
result <- switch(operation,

Case 1: Summary of the data frame
summary = {
print("Summary of Data Frame:")
summary(data)

},

Case 2: Add a new column 'Bonus' which is 10% of the Salary
add_column = {
data$Bonus <- data$Salary * 0.10
print("Data Frame after adding 'Bonus' column:")
data

},

Case 3: Filter employees with Salary > 75,000
filter = {
filtered_data <- filter(data, Salary > 75000)
print("Filtered Data Frame (Salary > 75,000):")
filtered_data

},

Case 4: Group-wise average salary
group_stats = {
group_summary <- data %>%
group_by(Department) %>%
summarize(Average_Salary = mean(Salary))

print("Group-wise Average Salary:")
group_summary

},

Case 5: Add a new column 'raise_salary' which is 5% of the Salary
raise_salary = {
data$Salary <- data$Salary * 1.05
print("Data Frame after 5% salary increase:")
data

},

Default case
{
print("Invalid operation. Please choose a valid option.")

524

NULL
}

)

return(result)
}

Testing the new operation
data_frame_operation(staff_data, "raise_salary")

#> [1] "Data Frame after 5% salary increase:"

#> EmployeeID Name Department Salary
#> 1 1 Alice HR 73500
#> 2 2 Ebunlomo IT 84000
#> 3 3 Festus Finance 78750
#> 4 4 Othniel Data Science 86100
#> 5 5 Bob Marketing 76650
#> 6 6 Testimony Finance 81900

Return to Exercise 3.1.3

Solution Quiz 3.1

Question 1:

What is the correct way to define a function in R?

a) function_name <- function { ... }

b) function_name <- function(...) { ... } 3

c) function_name <- function[...] { ... }

d) function_name <- function(...) [...]

Question 2:

A variable defined inside a function is accessible outside the function.

a) True

b) False 3

525

Question 3:

Which of the following is NOT a benefit of writing functions?

a) Code Reusability

b) Improved Readability

c) Increased Code Complexity 3

d) Modular Programming

Return to Quiz 3.1

Lab 4: Managing Packages and Workflows

Solution Quiz 4.1

Question 1:

Imagine that you want to install the shiny package from CRAN. Which command should you
use?

a) install.packages("shiny") 3

b) library("shiny")

c) install.packages(shiny)

d) require("shiny")

Question 2:

What must you do after installing a package before you can use it in your current session?

a) Restart R

b) Run install.packages() again

c) Load it with library() 3

d) Convert the package into a dataset

Question 3:

If you want to install a package that is not on CRAN (e.g., from GitHub), which additional
package would be helpful?

526

a) installer

b) rio

c) devtools 3

d) github_install

Question 4:

Which function would you use to update all outdated packages in your R environment?

a) update.packages() 3

b) install.packages()

c) library()

d) require()

Question 5:

Which function can be used to check the version of an installed package?

a) version()

b) packageVersion() 3

c) libraryVersion()

d) install.packages()

Return to Exercise 4.1

Solution Quiz 4.2

Question 1:

What is a key advantage of using RStudio Projects?

a) They automatically install packages.

b) They allow you to use absolute paths easily.

527

c) They set the working directory to the project folder, enabling relative paths. 3

d) They prevent package updates.

Question 2:

Which file extension identifies an RStudio Project file?

a) .Rdata

b) .Rproj 3

c) .Rmd

d) .Rscript

Question 3:

Why are relative paths preferable in a collaborative environment?

a) They are shorter and easier to type.

b) They change automatically when you move files.

c) They ensure that the code works regardless of the user’s file system structure. 3

d) They are required for Git version control.

Return to Quiz 4.2

Solution Quiz 4.3

Question 1:

Which package is commonly used to read CSV files into R as tibbles?

a) readxl

b) haven

c) readr 3

d) writexl

528

Question 2:

If you need to import an Excel file, which function would you likely use?

a) read_csv()

b) read_xlsx() 3

c) read_sav()

d) read_dta()

Question 3:

Which package would you use to easily handle a wide variety of data formats without memo-
rising specific functions for each?

a) rio 3

b) haven

c) janitor

d) readxl

Question 4:

After cleaning and analysing your data, which function would you use to write the results to
a CSV file?

a) write_xlsx()

b) exporter()

c) write_csv() 3

d) import()

Return to Quiz 4.3

529

Lab 5: Data Transformation

Solution Quiz 5.1

Question 1:

What is the primary purpose of the pipe operator (|> or %>%) in R?

a) To run code in parallel.

b) To nest functions inside one another.

c) To pass the output of one function as the input to the next, improving code readability. 3

d) To automatically clean missing data.

Question 2:

Consider the following R code snippets:

numbers <- c(2, 4, 6)

Nested function version:
result1 <- round(sqrt(sum(numbers)))

Pipe operator version:
result2 <- numbers |> sum() |> sqrt() |> round()

For a new R learner, is the pipe operator version generally more readable than the nested
function version?

a) True 3

b) False

Question 3:

What is the output of the following R code?

result <- c(5, 10, 15)
result |> mean()

a) 10 3

530

b) 15

c) 5

d) 30

Question 4:

Which of the following code snippets correctly uses the pipe operator to apply the sqrt()
function to the sum of numbers from 1 to 4?

a) sqrt(sum(1:4))

b) 1:4 |> sum() |> sqrt() 3

c) sum(1:4) |> sqrt

d) 1:4 |> sqrt() |> sum()

Question 5:

What will be the output of the following code?

result <- letters
result |> head(3)

a) c("a", "b", "c") 3

b) c("x", "y", "z")

c) c("A", "B", "C")

d) An error is thrown.

Return to Quiz 5.1

Solution Quiz 5.2

Question 1:

Which function would you use in dplyr to randomly select a specified number of rows from a
dataset?

a) sample(n = 5)

531

b) slice_sample(n = 5) 3

c) filter_sample()

d) mutate_sample()

Question 2:

To calculate the average sleep_total for each vore category, which combination of functions
is most appropriate?

a) group_by(vore) |> select(sleep_total) |> summarise(mean(sleep_total))

b) select(vore, sleep_total) |> summarise(mean(sleep_total)) |> group_by(vore)

c) group_by(vore) |> summarise(avg_sleep = mean(sleep_total, na.rm = TRUE))
3

d) filter(vore) |> mutate(avg_sleep = mean(sleep_total))

Question 3:

To extract rows with the maximum value of a specified variable, which function is appropriate
in dplyr?

a) slice_max() 3

b) slice_min()

c) mutate()

d) select()

Question 4:

Which dplyr function would you use if you want to create a new column called weight_ratio
by dividing bodywt by mean_bodywt?

a) filter()

b) select()

c) mutate() 3

d) arrange()

532

Question 5:

Suppose you need to identify the top 3 penguins with the highest bill aspect ratio from the
penguins dataset after calculating it in a new column. Which of the following code snippets
is the most concise and appropriate?

a)

penguins |>
mutate(bill_aspect_ratio = bill_length_mm / bill_depth_mm) |>
arrange(desc(bill_aspect_ratio)) |>
head(3)

b)

penguins |>
mutate(bill_aspect_ratio = bill_length_mm / bill_depth_mm) |>
slice_max(bill_aspect_ratio, n = 3)

c) Both a and b are equally concise and valid. 3

d) Neither a nor b is valid.

Question 6:

Given the following code, which is the correct equivalent using the pipe operator?

result <- arrange(filter(select(msleep, name, sleep_total), sleep_total > 8), sleep_total)

a) msleep |> select(name, sleep_total) |> filter(sleep_total > 8) |> arrange(sleep_total)
3

b) msleep |> filter(sleep_total > 8) |> select(name, sleep_total) |> arrange(sleep_total)

c) select(msleep, name, sleep_total) |> filter(sleep_total > 8) |> arrange(sleep_total)

d) msleep |> arrange(sleep_total) |> filter(sleep_total > 8) |> select(name,
sleep_total)

Question 7:

Which of the following correctly applies a log transformation to numeric columns only?

a)

533

mutate_all(log)

b)

mutate(across(everything(), log))

c)

mutate(select(where(is.numeric), log))

d) 3

mutate(across(where(is.numeric), log))

Question 8:

What does mutate(across(everything(), as.character)) do?

a) Converts all character columns to numeric.

b) Converts all columns in the dataset to character type. 3

c) Applies a conditional transformation to numeric columns.

d) Filters out non-character values.

Question 9:

To extract the rows with the minimum value of a specified variable, which dplyr function
should you use?

a) slice_min() 3

b) slice_max()

c) arrange()

d) filter()

Question 10:

If you want to reorder the rows of msleep by sleep_total in ascending order and then only
show the top 5 rows, which code snippet is correct?

534

a) msleep |> arrange(sleep_total) |> head(5) 3

b) msleep |> head(5) |> arrange(sleep_total)

c) msleep |> summarise(sleep_total) |> head(5)

d) msleep |> select(sleep_total) |> arrange(desc(sleep_total)) |> head(5)

Return to Quiz 5.2

Solution 5.2.1: Top 5 Carnivorous Animals

msleep |>
filter(vore == "carni") |>
mutate(sleep_to_weight = sleep_total / bodywt) |>
select(name, sleep_total, sleep_to_weight) |>
slice_max(sleep_total, n = 5)

#> # A tibble: 5 x 3
#> name sleep_total sleep_to_weight
#> <chr> <dbl> <dbl>
#> 1 Thick-tailed opposum 19.4 52.4
#> 2 Long-nosed armadillo 17.4 4.97
#> 3 Tiger 15.8 0.0972
#> 4 Northern grasshopper mouse 14.5 518.
#> 5 Lion 13.5 0.0836

Return to Exercise 5.2.1

Solution Quiz 5.3

Question 1:

Which function in R checks if there are any missing values in an object?

a) is.na()

b) anyNA() 3

c) complete.cases()

d) na.omit()

535

Question 2:

Which approach removes any rows containing NA values?

a) na.omit() 3

b) replace_na()

c) complete.cases()

d) anyNA()

Question 3:

If you decide to impute missing values in a column using the median, what is one potential
advantage of using the median rather than the mean?

a) The median is always easier to compute.

b) The median is more affected by outliers than the mean.

c) The median is less influenced by extreme values and may provide a more robust estimate.
3

d) The median will always be exactly halfway between the min and max values.

Question 4:

How would you replace all NA values in character columns with "Unknown"?

a) 3

mutate(across(where(is.character), ~ replace_na(., "Unknown")))

b)

mutate_all(~ replace_na(., "Unknown"))

c)

mutate(across(where(is.character), na.omit))

d)

536

mutate(across(where(is.character), replace(. == NA, "Unknown")))

Question 5:

What does the anyNA() function return?

a) The number of missing values in an object.

b) TRUE if there are any missing values in the object; otherwise, FALSE. 3

c) A logical vector of missing values in each row.

d) A subset of the data frame without missing values.

Question 6:

You want to create a new column in a data frame that flags rows with missing values as TRUE.
Which code achieves this?

a) df$new_col <- !complete.cases(df) 3

b) df$new_col <- complete.cases(df)

c) df$new_col <- anyNA(df)

d) df$new_col <- is.na(df)

Question 7:

Before removing rows with missing values, what is an important consideration?

a) Whether the missing values are randomly distributed across the data. 3

b) Whether the dataset is stored in a data frame.

c) Whether missing values exist in every column.

d) Whether the missing values are encoded as NA.

Question 8:

Why should the proportion of missing data in a row or column be considered before removing
it?

a) Removing rows or columns with minimal missing values may lead to excessive data loss.
3

537

b) Columns with missing values cannot be visualized.
c) Rows with missing values are always irrelevant.
d) Rows with missing values should never be analysed.

Question 9:

If a dataset has 50% missing values in a column, what is a common approach to handle this
situation?

a) Replace missing values with the column mean.

b) Remove the column entirely. 3

c) Replace missing values with zeros.

d) Leave the missing values as they are.

Question 10:

What does the following Tidyverse-style code do?

library(dplyr)

airquality_data <- airquality_data %>%
mutate(Ozone = if_else(is.na(Ozone), mean(Ozone, na.rm = TRUE), Ozone))

a) Removes rows where Ozone is missing.

b) Replaces missing values in Ozone with the mean of the column. 3

c) Flags rows where Ozone is missing.

d) Deletes the Ozone column if it has missing values.

Return to Quiz 5.3

Solution 5.3.1: Missing Data Analysis Report for the Television Company Dataset

In this report, we explore several methods for dealing with missing data in a television company
dataset. First, we import the data, then apply four different approaches to address any missing
values. After evaluating the results, we conclude with a recommendation on the best method
to use.

538

Data Import & Initial Inspection

We begin by loading the dataset and inspecting its structure, summary statistics, and missing
values.

library(tidyverse)

Import the dataset
tv_data <- read_csv("r-data/data-tv-company.csv")

Inspect the data structure and summary statistics
glimpse(tv_data)

#> Rows: 462
#> Columns: 9
#> $ regard <dbl> 8, 5, 5, 4, 6, 6, 4, 5, 7, NA, 6, 5, 5, 3, 4, 5, 5, NA, 5, 7, ~
#> $ gender <chr> "Male", "Female", "Female", "Female", "Female", "Female", "Fem~
#> $ views <dbl> 458, 460, 457, 437, 438, 456, NA, 448, 450, 459, 442, 443, 451~
#> $ online <dbl> 821, 810, 824, 803, 791, 813, 797, 813, 827, 820, 802, 812, 81~
#> $ library <dbl> 104, 99, NA, NA, 84, 104, NA, 94, 100, 103, 101, 90, 99, 94, 9~
#> $ Show1 <dbl> 74, 70, 72, 74, 74, 73, 71, 73, 79, 77, 70, 74, 73, 72, 71, 78~
#> $ Show2 <dbl> 74, 74, 72, 74, 70, 73, 71, 72, 76, 77, 69, 70, 72, 73, 70, 76~
#> $ Show3 <dbl> 64, 58, 59, 58, 57, 61, 58, 58, 62, 60, 62, 59, 59, 58, 58, 60~
#> $ Show4 <dbl> 39, 44, 34, 39, 34, 40, 40, 31, 44, 35, 37, 33, 36, 35, 37, 37~

summary(tv_data)

#> regard gender views online
#> Min. :2.000 Length:462 Min. :430.0 Min. :787
#> 1st Qu.:5.000 Class :character 1st Qu.:445.0 1st Qu.:809
#> Median :5.000 Mode :character Median :450.0 Median :815
#> Mean :5.454 Mean :449.9 Mean :815
#> 3rd Qu.:6.000 3rd Qu.:456.0 3rd Qu.:821
#> Max. :9.000 Max. :474.0 Max. :843
#> NA's :30 NA's :22
#> library Show1 Show2 Show3
#> Min. : 84.00 Min. :66.00 Min. :64.00 Min. :55.00
#> 1st Qu.: 95.00 1st Qu.:72.00 1st Qu.:71.00 1st Qu.:59.00
#> Median : 98.00 Median :73.00 Median :72.00 Median :60.00
#> Mean : 98.14 Mean :73.08 Mean :72.16 Mean :59.87
#> 3rd Qu.:101.00 3rd Qu.:75.00 3rd Qu.:74.00 3rd Qu.:61.00

539

#> Max. :115.00 Max. :79.00 Max. :78.00 Max. :66.00
#> NA's :68
#> Show4
#> Min. :21.00
#> 1st Qu.:34.00
#> Median :37.00
#> Mean :37.42
#> 3rd Qu.:41.00
#> Max. :50.00
#>

Count missing values per row
count_missing_rows <- function(data) {
sum(apply(data, MARGIN = 1, function(x) any(is.na(x))))

}

count_missing_rows(tv_data)

#> [1] 112

Tip

apply(data, MARGIN = 1, function(x) any(is.na(x))):

• MARGIN = 1: Instructs apply() to iterate over rows of the data frame (if set to 2,
it would iterate over columns).

• function(x) any(is.na(x)): For each row, checks if any element is missing (i.e.,
is NA), returning TRUE if so.

sum(...):

• Sums the logical vector produced by apply(), where each TRUE is counted as 1,
thereby giving the total number of rows with at least one missing value.

Count missing values per column using inspectdf
tv_data %>%
inspectdf::inspect_na()

#> # A tibble: 9 x 3
#> col_name cnt pcnt

540

#> <chr> <int> <dbl>
#> 1 library 68 14.7
#> 2 regard 30 6.49
#> 3 views 22 4.76
#> 4 gender 0 0
#> 5 online 0 0
#> 6 Show1 0 0
#> 7 Show2 0 0
#> 8 Show3 0 0
#> 9 Show4 0 0

Strategies for Dealing with Missing Data

Below, we demonstrate four different methods to handle missing data in the dataset.

Method 1: Complete Case Analysis

Remove all rows with any missing values.

tv_data_complete <- tv_data %>% drop_na()

Tip

Alternatively, you can use na.omit() to remove rows with missing values:

tv_data %>% na.omit()

#> # A tibble: 350 x 9
#> regard gender views online library Show1 Show2 Show3 Show4
#> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 8 Male 458 821 104 74 74 64 39
#> 2 5 Female 460 810 99 70 74 58 44
#> 3 6 Female 438 791 84 74 70 57 34
#> 4 6 Female 456 813 104 73 73 61 40
#> 5 5 Male 448 813 94 73 72 58 31
#> 6 7 Female 450 827 100 79 76 62 44
#> 7 6 Female 442 802 101 70 69 62 37
#> 8 5 Female 443 812 90 74 70 59 33
#> 9 5 Female 451 815 99 73 72 59 36
#> 10 3 Male 440 810 94 72 73 58 35
#> # i 340 more rows

541

Method 2: Numeric Imputation with Column Means

Replace missing values in all numeric columns with the respective column mean.

tv_data_mean_imputed <- tv_data %>%
bulkreadr::fill_missing_values(method = "mean")

Method 3: Targeted Replacement using tidyr::replace_na() with Medians

For numeric columns with missing values (regard, views, and library), replace NAs with
the column median.

tv_data_tidyr <- tv_data %>%
replace_na(list(

regard = median(tv_data$regard, na.rm = TRUE),
views = median(tv_data$views, na.rm = TRUE),
library = median(tv_data$library, na.rm = TRUE)

))

Tip

Alternatively, you can use the selected_variables argument in the
bulkreadr::fill_missing_values() function with method = "median" to impute
these missing values:

tv_data_mean_imputed <- tv_data %>%
bulkreadr::fill_missing_values(selected_variables = c("regard", "views", "library"), method = "median")

Evaluation and Selection

Based on the outputs from the various methods, here is a summary and evaluation of each
approach:

Original Data:

• Dimensions: 462 rows × 9 columns.

• Missing Values:

– regard: 30 missing

542

– views: 22 missing

– library: 68 missing

Complete Case Analysis:

• Dimensions: 350 rows × 9 columns.

• Summary: All rows with any missing values were removed, resulting in a loss of about
24% of the data.

• Consideration: Although this method produces a dataset free of missing values, it may
discard valuable information and reduce the statistical power of subsequent analyses.

Numeric Imputation (Replacing Missing Numeric Values with Column Means):

• Dimensions: 462 rows × 9 columns.

• Summary: Missing numeric values in columns such as regard, views, and library have
been replaced by their respective column means. The summary no longer shows missing
value counts for these columns.

• Consideration: This method preserves all observations but may smooth out natural
variability, potentially impacting the distribution and variance in the data.

Targeted Replacement using tidyr::replace_na():

• Dimensions: 462 rows × 9 columns.

• Summary: Missing values in numeric columns (regard, views, library) have been
replaced by their respective medians, resulting in a dataset identical in dimensions to
the original but with imputed values.

• Consideration: This method retains the full dataset and provides robust imputation
for numeric data, preserving the distribution better than mean imputation.

Conclusion

In summary, after comparing the different approaches:

• Complete Case Analysis yields a clean dataset but reduces the sample size.

• Numeric Imputation retains all data by substituting missing values with means, al-
though it may reduce variability.

• Targeted Replacement (using medians) preserves the full dataset and is robust to
outliers.

543

Recommendation:

Method 3 (Targeted Replacement using Medians) is preferred because it maintains the full
dataset while providing robust imputation for missing numeric values.

Return to Exercise 5.3.1

Lab 6: Tidy Data and Joins

Solution Quiz 6.1

Question 1:

Consider the following data frame:

sales_data_wide <- data.frame(
Month = c("Oct", "Nov", "Dec"),
North = c(180, 190, 200),
East = c(177, 183, 190),
South = c(150, 140, 160),
West = c(200, 220, 210)

)

Which function would you use to convert this wide-format dataset into a long-format
dataset?

a) pivot_long()

b) pivot_wider()

c) separate()

d) pivot_longer() 3

Question 2:

In the pivot_longer() function, if you want the original column names (“North”, “East”,
“South”, “West”) to appear in a new column called “Region”, which argument would you
use?

a) cols

544

b) names_to 3

c) values_to

d) names_prefix

Question 3:

Given the same data frame, which argument in pivot_longer() specifies the name of the new
column that stores the sales figures?

a) names_to

b) values_to 3

c) cols

d) values_drop_na

Question 4:

What is the primary purpose of using pivot_wider()?

a) To convert long-format data into wide format 3

b) To combine two data frames

c) To split a column into multiple columns

d) To remove missing values

Question 5:

If you apply pivot_longer() on sales_data_wide without specifying cols, what is likely to
happen?

a) All columns will be pivoted, including the identifier column “Month”, leading to an
undesired result. 3

b) Only numeric columns will be pivoted.

c) The function will automatically ignore non-numeric columns.

d) An error will be thrown immediately.

545

Question 6:

Which package provides the functions pivot_longer() and pivot_wider()?

a) dplyr

b) tidyr 3

c) ggplot2

d) readr

Question 7:

The functions pivot_longer() and pivot_wider() are inverses of each other, allowing you
to switch between wide and long formats easily.

a) True 3

b) False

Question 8:

In the following code snippet, what is the role of the cols = c(North, East, South, West)
argument?

sales_data_long <- sales_data_wide |>
pivot_longer(

cols = c(North, East, South, West),
names_to = "Region",
values_to = "Sales"

)

a) It tells pivot_longer() which columns to keep as they are.

b) It specifies the columns to be pivoted from wide to long format. 3

c) It defines the new column names for the output.

d) It removes missing values from these columns.

Question 9:

After reshaping the data to long format, which of the following is a potential advantage?

a) Easier to merge with other datasets

546

b) Simplified time series analysis and visualisation 3

c) Increased redundancy in the dataset

d) Reduced number of observations

Question 10:

Which of the following best describes tidy data?

a) Each variable forms a column and each observation a row 3

b) Data is merged from multiple sources

c) Data is automatically plotted

d) Missing values are always removed

Return to Quiz 6.1

Solution 6.1.1: Tidying the Pew Religion and Income Survey Data

In this solution, we tidy the religion_income dataset from the Pew Research Trust’s 2014
survey. The dataset includes one column for religion and multiple columns for various income
ranges (e.g., <$10k, $10-20k, $20-30k, etc.), each indicating the number of respondents who
fall within that bracket. Our goals are:

1. Import and Inspect the data.

2. Reshape the dataset from wide to long format, gathering all income range columns into
two new variables: income_range and respondents.

3. Create a Summary that shows the total number of respondents for each income range,
sorted in a logical order.

4. Identify which religious affiliation has the highest number of respondents in the top
income bracket (>150k).

5. Visualise the distribution of respondents by income range.

547

Importing and Inspecting the Data

We begin by loading the tidyverse package and importing the dataset from the r-data direc-
tory. We then use glimpse() to verify that the file has loaded correctly and to explore its
structure.

library(tidyverse)

Import the dataset
relig_income <- read_csv("r-data/religion-income.csv")

#> Rows: 18 Columns: 11
#> -- Column specification --
#> Delimiter: ","
#> chr (1): religion
#> dbl (10): <$10k, $10-20k, $20-30k, $30-40k, $40-50k, $50-75k, $75-100k, $100...
#>
#> i Use `spec()` to retrieve the full column specification for this data.
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Inspect the data structure
glimpse(relig_income)

#> Rows: 18
#> Columns: 11
#> $ religion <chr> "Agnostic", "Atheist", "Buddhist", "Catholic", "D~
#> $ `<$10k` <dbl> 27, 12, 27, 418, 15, 575, 1, 228, 20, 19, 289, 29~
#> $ `$10-20k` <dbl> 34, 27, 21, 617, 14, 869, 9, 244, 27, 19, 495, 40~
#> $ `$20-30k` <dbl> 60, 37, 30, 732, 15, 1064, 7, 236, 24, 25, 619, 4~
#> $ `$30-40k` <dbl> 81, 52, 34, 670, 11, 982, 9, 238, 24, 25, 655, 51~
#> $ `$40-50k` <dbl> 76, 35, 33, 638, 10, 881, 11, 197, 21, 30, 651, 5~
#> $ `$50-75k` <dbl> 137, 70, 58, 1116, 35, 1486, 34, 223, 30, 95, 110~
#> $ `$75-100k` <dbl> 122, 73, 62, 949, 21, 949, 47, 131, 15, 69, 939, ~
#> $ `$100-150k` <dbl> 109, 59, 39, 792, 17, 723, 48, 81, 11, 87, 753, 4~
#> $ `>150k` <dbl> 84, 74, 53, 633, 18, 414, 54, 78, 6, 151, 634, 42~
#> $ `Don't know/refused` <dbl> 96, 76, 54, 1489, 116, 1529, 37, 339, 37, 162, 13~

The religion income data is arranged in a compact or wide format. Each row represents a
religious affiliation, and each income range column shows the number of respondents in that
bracket.

548

Tidying the Data

We transform the data from wide to long format using pivot_longer(), gathering all
columns except religion into two new columns: income_range (for the bracket names) and
respondents (for the counts).

relig_income_long <- relig_income %>%
pivot_longer(

cols = -religion, # All columns except 'religion'
names_to = "income_range", # New column for the original income range names
values_to = "respondents" # New column for the corresponding counts

)

Inspect the tidied data
glimpse(relig_income_long)

#> Rows: 180
#> Columns: 3
#> $ religion <chr> "Agnostic", "Agnostic", "Agnostic", "Agnostic", "Agnostic~
#> $ income_range <chr> "<$10k", "$10-20k", "$20-30k", "$30-40k", "$40-50k", "$50~
#> $ respondents <dbl> 27, 34, 60, 81, 76, 137, 122, 109, 84, 96, 12, 27, 37, 52~

Each row now represents a unique combination of religion and income bracket, along with the
corresponding number of respondents.

Creating a Summary Table

We group the tidied data by income_range and sum the total respondents. To achieve a logical
order (lowest to highest income), we define a custom factor level, then arrange accordingly.

income_levels <- c(
"<$10k",
"$10-20k",
"$20-30k",
"$30-40k",
"$40-50k",
"$50-75k",
"$75-100k",
"$100-150k",
">150k",
"Don't know/refused"

549

)

income_summary <- relig_income_long %>%
mutate(income_range = factor(income_range, levels = income_levels)) %>%
group_by(income_range) %>%
summarise(total_respondents = sum(respondents, na.rm = TRUE)) %>%
ungroup()

income_summary

#> # A tibble: 10 x 2
#> income_range total_respondents
#> <fct> <dbl>
#> 1 <$10k 1930
#> 2 $10-20k 2781
#> 3 $20-30k 3357
#> 4 $30-40k 3302
#> 5 $40-50k 3085
#> 6 $50-75k 5185
#> 7 $75-100k 3990
#> 8 $100-150k 3197
#> 9 >150k 2608
#> 10 Don't know/refused 6121

The data now shows the total number of respondents in each bracket, sorted from <$10k to
>150k, with “Don’t know/refused” at the end.

Identifying Which Religion Has the Largest Number of Respondents in the >150k Bracket

We can now focus on the >150k bracket to see which religion leads in this top income category.

top_bracket <- relig_income_long %>%
filter(income_range == ">150k") %>%
group_by(religion) %>%
summarise(total_in_top_bracket = sum(respondents, na.rm = TRUE)) %>%
arrange(desc(total_in_top_bracket))

top_bracket

550

#> # A tibble: 18 x 2
#> religion total_in_top_bracket
#> <chr> <dbl>
#> 1 Mainline Prot 634
#> 2 Catholic 633
#> 3 Evangelical Prot 414
#> 4 Unaffiliated 258
#> 5 Jewish 151
#> 6 Agnostic 84
#> 7 Historically Black Prot 78
#> 8 Atheist 74
#> 9 Hindu 54
#> 10 Buddhist 53
#> 11 Orthodox 46
#> 12 Mormon 42
#> 13 Other Faiths 41
#> 14 Don't know/refused 18
#> 15 Other Christian 12
#> 16 Jehovah's Witness 6
#> 17 Muslim 6
#> 18 Other World Religions 4

We see that Mainline Protestant affiliates have the greatest number of respondents in the
>150k bracket (634), closely followed by Catholics (633).

Visualising the Distribution of Respondents by Income Range

Finally, we create a bar chart with numeric labels on each bar, making it easy to compare the
total respondents across income brackets.

income_summary |>
ggplot(aes(x = income_range, y = total_respondents, fill = income_range)) +
geom_col(show.legend = FALSE) +
geom_text(aes(label = total_respondents), vjust = -0.3, size = 3) +
labs(

title = "Total Respondents by Income Range",
x = "Income Range",
y = "Total Respondents"

) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))

551

1930

2781
3357 3302 3085

5185

3990

3197
2608

6121

0

2000

4000

6000

<$
10

k

$1
0−

20
k

$2
0−

30
k

$3
0−

40
k

$4
0−

50
k

$5
0−

75
k

$7
5−

10
0k

$1
00

−1
50

k

>1
50

k

Don
't k

no
w/re

fu
se

d

Income Range

To
ta

l R
es

po
nd

en
ts

Total Respondents by Income Range

The bar chart shows each income bracket on the x-axis, with its total respondents on the
y-axis. Each bar is labelled with the corresponding numeric value, offering a clear comparison.
“Don’t know/refused” emerges as the largest category (6121), followed by $50-75k (5185).

Return to Exercise 6.1.1

Solution Quiz 6.2

Question 1:

Given the following tibble:

tb_cases <- tibble(
country = c("Brazil", "Brazil", "China", "China"),
year = c(1999, 2000, 1999, 2000),
rate = c("37737/172006362", "80488/174504898", "212258/1272915272", "213766/1280428583")

)

Which function would you use to split the "rate" column into two separate columns for cases
and population?

a) separate() 3

552

b) unite()

c) pivot_longer()

d) pivot_wider()

Question 2:

Which argument in separate() allows automatic conversion of new columns to appropriate
data types?

a) remove

b) auto

c) convert 3

d) into

Question 3:

Which function would you use to merge two columns into one, for example, combining separate
“century” and “year” columns?

a) separate()

b) unite() 3

c) pivot_longer()

d) pivot_wider()

Question 4:

In the separate() function, what does the sep argument define?

a) The new column names

b) The delimiter at which to split the column 3

c) The data frame to be merged

d) The columns to remove

Question 5:

Consider the following data frame:

553

tb_cases <- tibble(
country = c("Afghanistan", "Brazil", "China"),
century = c("19", "19", "19"),
year = c("99", "99", "99")

)

Which code correctly combines “century” and “year” into a single column “year” without any
separator?

a) tb_cases |> unite(year, century, year, sep = "") 3

b) tb_cases |> separate(year, into = c("century", "year"), sep = "")

c) tb_cases |> unite(year, century, year, sep = "_")

d) tb_cases |> pivot_longer(cols = c(century, year))

Question 6:

When using separate(), how can you retain the original column after splitting it?

a) Set remove = FALSE 3

b) Set convert = TRUE

c) Use unite() instead

d) Omit the sep argument

Question 7:

Which variant of separate() would you use to split a column at fixed character positions?

a) separate_wider_delim()

b) separate_wider_regex()

c) separate_wider_position() 3

d) separate()

Question 8:

By default, the unite() function removes the original columns after combining them.

a) True 3

554

b) False

Question 9:

What is the main benefit of using separate() on a column that combines multiple data points
(e.g. “745/19987071”)?

a) It facilitates the conversion of string data into numeric data automatically.

b) It simplifies further analysis by splitting combined information into distinct, analysable
components. 3

c) It merges the data with another dataset.

d) It increases data redundancy.

Question 10:

Which argument in unite() determines the character inserted between values when combining
columns?

a) separator

b) sep 3

c) col

d) delimiter

Return to Quiz 6.2

Solution 6.2.1: Transforming the Television Company Dataset

In this solution, we will demonstrate how to clean and transform the television-company-data.csv
dataset. Our primary goal is to split the combined Shows column into four separate columns
(one for each show), calculate the average score across these shows, and then analyse these
averages by gender.

Importing and Inspecting the Data

First, we import the dataset using read_csv() and inspect its structure using glimpse().
This helps us understand the data and verify that the file has been loaded correctly.

555

library(tidyverse)

Import the dataset from the r-data directory
tv_data <- read_csv("r-data/television-company-data.csv")

Inspect the data structure

tv_data

#> # A tibble: 462 x 6
#> regard gender views online library Shows
#> <dbl> <chr> <dbl> <dbl> <dbl> <chr>
#> 1 8 Male 458 821 104 74, 74, 64, 39
#> 2 5 Female 460 810 99 70, 74, 58, 44
#> 3 5 Female 457 824 NA 72, 72, 59, 34
#> 4 4 Female 437 803 NA 74, 74, 58, 39
#> 5 6 Female 438 791 84 74, 70, 57, 34
#> 6 6 Female 456 813 104 73, 73, 61, 40
#> 7 4 Female NA 797 NA 71, 71, 58, 40
#> 8 5 Male 448 813 94 73, 72, 58, 31
#> 9 7 Female 450 827 100 79, 76, 62, 44
#> 10 NA Female 459 820 103 77, 77, 60, 35
#> # i 452 more rows

glimpse(tv_data)

#> Rows: 462
#> Columns: 6
#> $ regard <dbl> 8, 5, 5, 4, 6, 6, 4, 5, 7, NA, 6, 5, 5, 3, 4, 5, 5, NA, 5, 7, ~
#> $ gender <chr> "Male", "Female", "Female", "Female", "Female", "Female", "Fem~
#> $ views <dbl> 458, 460, 457, 437, 438, 456, NA, 448, 450, 459, 442, 443, 451~
#> $ online <dbl> 821, 810, 824, 803, 791, 813, 797, 813, 827, 820, 802, 812, 81~
#> $ library <dbl> 104, 99, NA, NA, 84, 104, NA, 94, 100, 103, 101, 90, 99, 94, 9~
#> $ Shows <chr> "74, 74, 64, 39", "70, 74, 58, 44", "72, 72, 59, 34", "74, ~

The television company data contains 462 rows and 10 columns, including variables for viewer
regard, gender, number of views, online interactions, library usage, and four show scores.

556

Splitting the ‘Shows’ Column

The Shows column contains scores for four different shows, separated by commas. We use
the separate() function to split this column into four new columns named Show1, Show2,
Show3, and Show4. The argument convert = TRUE automatically converts these new columns
to numeric values, ensuring they are ready for analysis.

tv_data <- tv_data %>%
separate(Shows,

into = c("Show1", "Show2", "Show3", "Show4"),
sep = ",",
convert = TRUE

)

Check the transformed data
glimpse(tv_data)

#> Rows: 462
#> Columns: 9
#> $ regard <dbl> 8, 5, 5, 4, 6, 6, 4, 5, 7, NA, 6, 5, 5, 3, 4, 5, 5, NA, 5, 7, ~
#> $ gender <chr> "Male", "Female", "Female", "Female", "Female", "Female", "Fem~
#> $ views <dbl> 458, 460, 457, 437, 438, 456, NA, 448, 450, 459, 442, 443, 451~
#> $ online <dbl> 821, 810, 824, 803, 791, 813, 797, 813, 827, 820, 802, 812, 81~
#> $ library <dbl> 104, 99, NA, NA, 84, 104, NA, 94, 100, 103, 101, 90, 99, 94, 9~
#> $ Show1 <int> 74, 70, 72, 74, 74, 73, 71, 73, 79, 77, 70, 74, 73, 72, 71, 78~
#> $ Show2 <int> 74, 74, 72, 74, 70, 73, 71, 72, 76, 77, 69, 70, 72, 73, 70, 76~
#> $ Show3 <int> 64, 58, 59, 58, 57, 61, 58, 58, 62, 60, 62, 59, 59, 58, 58, 60~
#> $ Show4 <int> 39, 44, 34, 39, 34, 40, 40, 31, 44, 35, 37, 33, 36, 35, 37, 37~

We now have separate columns (Show1, Show2, Show3, Show4) for each show’s score. The
dataset still has 462 rows, but now includes 9 columns: the original variables plus the newly
created show score columns and excluding variable Shows.

Calculating the Mean Show Score

Next, we create a new variable, mean_show, which represents the average score across the
four shows. In this step, we use rowwise() along with mutate() to calculate the mean for
each observation. The na.rm = TRUE argument ensures that any missing values are ignored
during the calculation. After computing the mean, we use ungroup() to remove the row-wise
grouping.

557

tv_data <- tv_data %>%
rowwise() %>%
mutate(mean_show = mean(c(Show1, Show2, Show3, Show4), na.rm = TRUE)) %>%
ungroup()

updated dataset with the new variable
tv_data

#> # A tibble: 462 x 10
#> regard gender views online library Show1 Show2 Show3 Show4 mean_show
#> <dbl> <chr> <dbl> <dbl> <dbl> <int> <int> <int> <int> <dbl>
#> 1 8 Male 458 821 104 74 74 64 39 62.8
#> 2 5 Female 460 810 99 70 74 58 44 61.5
#> 3 5 Female 457 824 NA 72 72 59 34 59.2
#> 4 4 Female 437 803 NA 74 74 58 39 61.2
#> 5 6 Female 438 791 84 74 70 57 34 58.8
#> 6 6 Female 456 813 104 73 73 61 40 61.8
#> 7 4 Female NA 797 NA 71 71 58 40 60
#> 8 5 Male 448 813 94 73 72 58 31 58.5
#> 9 7 Female 450 827 100 79 76 62 44 65.2
#> 10 NA Female 459 820 103 77 77 60 35 62.2
#> # i 452 more rows

The dataset now includes an additional column, mean_show, which holds each viewer’s average
score across the four shows.

Analysing the Data by Gender

To explore how viewer ratings differ by gender, we group the data by the gender variable and
calculate the average mean_show for each group using group_by() and summarise(). We also
count the number of observations per group.

gender_summary <- tv_data %>%
group_by(gender) %>%
summarise(

mean_of_mean_show = mean(mean_show, na.rm = TRUE),
count = n()

)

Display the summary
gender_summary

558

#> # A tibble: 3 x 3
#> gender mean_of_mean_show count
#> <chr> <dbl> <int>
#> 1 Female 60.7 304
#> 2 Male 60.5 154
#> 3 Omnigender 60.5 4

We observe that female viewers have a slightly higher average show score (approximately 60.7),
while male and omnigender viewers both average about 60.5. The female group is the largest
(304 viewers), whereas the omnigender group has only 4 viewers.

Visualising the Results

Finally, we create a bar plot using ggplot2 to visualise the average mean show score by gender.
This visualisation helps to clearly compare the scores across different genders.

gender_summary |> ggplot(aes(x = gender, y = mean_of_mean_show, fill = gender)) +
geom_col(show.legend = FALSE) +
labs(

title = "Average Mean Show Score by Gender",
x = "Gender",
y = "Average Mean Show Score"

) +
theme_minimal()

559

0

20

40

60

Female Male Omnigender
Gender

A
ve

ra
ge

 M
ea

n
S

ho
w

 S
co

re
Average Mean Show Score by Gender

The bar chart confirms that females have a marginally higher average mean show score than
males and omnigender viewers, though the difference is small. These findings suggest that
overall, viewers’ show scores are relatively consistent across genders, with only minor varia-
tions.

Return to Exercise 6.2.1

Solution Quiz 6.3

Question 1:

Given the following data frames:

df1 <- data.frame(id = 1:4, name = c("Ezekiel", "Bob", "Samuel", "Diana"))

df2 <- data.frame(id = c(2, 3, 5), score = c(85, 90, 88))

Which join would return only the rows with matching id values in both data frames?

a) left_join()

b) right_join()

560

c) inner_join() 3

d) full_join()

Question 2:

Using the same data frames, which join function retains all rows from df1 and fills unmatched
rows with NA?

a) left_join() 3

b) inner_join()

c) right_join()

d) full_join()

Question 3:

Which join function ensures that all rows from df2 are preserved, regardless of matches in
df1?

a) left_join()

b) inner_join()

c) full_join()

d) right_join() 3

Question 4:

What does a full join return when applied to df1 and df2?

a) Only matching rows

b) All rows from both data frames, with NA for unmatched entries 3

c) Only rows from df1

d) Only rows from df2

Question 5:

In a join operation, what is the purpose of the by argument?

561

a) It specifies the common column(s) used to match rows between the data frames 3

b) It orders the data frames

c) It selects which rows to retain

d) It converts keys to numeric values

Question 6:

If df1 contains duplicate values in the key column, what is a likely outcome of an inner join
with df2?

a) The joined data frame may contain more rows than either original data frame due to
duplicate matches. 3

b) The join will remove all duplicates automatically.

c) The function will return an error.

d) The duplicate rows will be merged into a single row.

Question 7:

An inner join returns all rows from both data frames, regardless of whether there is a match.

a) True

b) False 3

Question 8:

Consider the following alternative key columns:

df1 <- data.frame(studentID = 1:4, name = c("Alice", "Bob", "Charlie", "Diana"))

df2 <- data.frame(id = c(2, 3, 5), score = c(85, 90, 88))

How can you join these two data frames when the key column names differ?

a) Rename one column before joining.

b) Use by = c("studentID" = "id") in the join function. 3

562

c) Use an inner join without specifying keys.

d) Convert the keys to factors.

Question 9:

What is a ‘foreign key’ in the context of joining datasets?

a) A column in one table that uniquely identifies each row.

b) A column in one table that refers to the primary key in another table. 3

c) A column that has been split into multiple parts.

d) A column that is combined using unite().

Question 10:

Which join function would be most appropriate if you want a complete union of two datasets,
preserving all rows from both?

a) full_join() 3

b) inner_join()

c) left_join()

d) right_join()

Return to Quiz 6.3

Solution 6.3.1: Relational Analysis with the NYC Flights 2013 Dataset

In this solution, we explore relational data analysis using the nycflights13 dataset. We
will:

1. Load and inspect the flights and planes tables.

2. Perform various join operations (inner_join, left_join, right_join, and full_join)
to understand their differences.

3. Summarise the number of flights per aircraft manufacturer, handling missing data ap-
propriately.

4. Visualise the top five manufacturers with a bar plot, displaying labels for each bar.

563

Setup

We install the nycflights13 package, then load it along with the tidyverse package:

install.packages("nycflights13")

library(nycflights13)
library(tidyverse)

Inspecting the Data

We begin by inspecting the structure of the flights and planes tables to identify the available
columns and the common key (tailnum).

glimpse(flights)

#> Rows: 336,776
#> Columns: 19
#> $ year <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2~
#> $ month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
#> $ day <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
#> $ dep_time <int> 517, 533, 542, 544, 554, 554, 555, 557, 557, 558, 558, ~
#> $ sched_dep_time <int> 515, 529, 540, 545, 600, 558, 600, 600, 600, 600, 600, ~
#> $ dep_delay <dbl> 2, 4, 2, -1, -6, -4, -5, -3, -3, -2, -2, -2, -2, -2, -1~
#> $ arr_time <int> 830, 850, 923, 1004, 812, 740, 913, 709, 838, 753, 849,~
#> $ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854, 723, 846, 745, 851,~
#> $ arr_delay <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 8, -2, -3, 7, -1~
#> $ carrier <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV", "B6", "~
#> $ flight <int> 1545, 1714, 1141, 725, 461, 1696, 507, 5708, 79, 301, 4~
#> $ tailnum <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN", "N394~
#> $ origin <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR", "LGA",~
#> $ dest <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL", "IAD",~
#> $ air_time <dbl> 227, 227, 160, 183, 116, 150, 158, 53, 140, 138, 149, 1~
#> $ distance <dbl> 1400, 1416, 1089, 1576, 762, 719, 1065, 229, 944, 733, ~
#> $ hour <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6~
#> $ minute <dbl> 15, 29, 40, 45, 0, 58, 0, 0, 0, 0, 0, 0, 0, 0, 0, 59, 0~
#> $ time_hour <dttm> 2013-01-01 05:00:00, 2013-01-01 05:00:00, 2013-01-01 0~

glimpse(planes)

564

#> Rows: 3,322
#> Columns: 9
#> $ tailnum <chr> "N10156", "N102UW", "N103US", "N104UW", "N10575", "N105UW~
#> $ year <int> 2004, 1998, 1999, 1999, 2002, 1999, 1999, 1999, 1999, 199~
#> $ type <chr> "Fixed wing multi engine", "Fixed wing multi engine", "Fi~
#> $ manufacturer <chr> "EMBRAER", "AIRBUS INDUSTRIE", "AIRBUS INDUSTRIE", "AIRBU~
#> $ model <chr> "EMB-145XR", "A320-214", "A320-214", "A320-214", "EMB-145~
#> $ engines <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ~
#> $ seats <int> 55, 182, 182, 182, 55, 182, 182, 182, 182, 182, 55, 55, 5~
#> $ speed <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
#> $ engine <chr> "Turbo-fan", "Turbo-fan", "Turbo-fan", "Turbo-fan", "Turb~

The flights table contains 336,776 rows and 19 columns, whereas the planes table contains
3,322 rows and 9 columns. Both tables share the tailnum field, which we will use to link
them.

Relational Analysis with Joins

1. Inner Join

An inner join returns only those rows that have matching keys in both tables. In this case,
only flights with a corresponding plane record are included.

inner_join_result <- inner_join(flights, planes, by = "tailnum")

inner_join_result

#> # A tibble: 284,170 x 27
#> year.x month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 517 515 2 830 819
#> 2 2013 1 1 533 529 4 850 830
#> 3 2013 1 1 542 540 2 923 850
#> 4 2013 1 1 544 545 -1 1004 1022
#> 5 2013 1 1 554 600 -6 812 837
#> 6 2013 1 1 554 558 -4 740 728
#> 7 2013 1 1 555 600 -5 913 854
#> 8 2013 1 1 557 600 -3 709 723
#> 9 2013 1 1 557 600 -3 838 846
#> 10 2013 1 1 558 600 -2 849 851
#> # i 284,160 more rows

565

#> # i 19 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#> # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#> # hour <dbl>, minute <dbl>, time_hour <dttm>, year.y <int>, type <chr>,
#> # manufacturer <chr>, model <chr>, engines <int>, seats <int>, speed <int>,
#> # engine <chr>

Since flights has 336,776 rows, the inner join result of 284,170 rows indicates that some
flights lack a matching tailnum in the planes table (or have missing tailnum values).

2. Left Join {.unnumbered}

A left join returns all rows from the left table (flights) and any matching rows from the right
table (planes). Unmatched plane columns are filled with NA.

left_join_result <- left_join(flights, planes, by = "tailnum")

left_join_result

#> # A tibble: 336,776 x 27
#> year.x month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 517 515 2 830 819
#> 2 2013 1 1 533 529 4 850 830
#> 3 2013 1 1 542 540 2 923 850
#> 4 2013 1 1 544 545 -1 1004 1022
#> 5 2013 1 1 554 600 -6 812 837
#> 6 2013 1 1 554 558 -4 740 728
#> 7 2013 1 1 555 600 -5 913 854
#> 8 2013 1 1 557 600 -3 709 723
#> 9 2013 1 1 557 600 -3 838 846
#> 10 2013 1 1 558 600 -2 753 745
#> # i 336,766 more rows
#> # i 19 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#> # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#> # hour <dbl>, minute <dbl>, time_hour <dttm>, year.y <int>, type <chr>,
#> # manufacturer <chr>, model <chr>, engines <int>, seats <int>, speed <int>,
#> # engine <chr>

The result retains all 336,776 flights. Where there is no matching plane information, the
plane-related fields will be NA.

566

3. Right Join {.unnumbered}

A right join returns all rows from the right table (planes) and any matching rows from the
left table (flights). This join emphasises the planes, potentially including planes that did
not appear in any flight record.

right_join_result <- right_join(flights, planes, by = "tailnum")

right_join_result

#> # A tibble: 284,170 x 27
#> year.x month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 517 515 2 830 819
#> 2 2013 1 1 533 529 4 850 830
#> 3 2013 1 1 542 540 2 923 850
#> 4 2013 1 1 544 545 -1 1004 1022
#> 5 2013 1 1 554 600 -6 812 837
#> 6 2013 1 1 554 558 -4 740 728
#> 7 2013 1 1 555 600 -5 913 854
#> 8 2013 1 1 557 600 -3 709 723
#> 9 2013 1 1 557 600 -3 838 846
#> 10 2013 1 1 558 600 -2 849 851
#> # i 284,160 more rows
#> # i 19 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#> # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#> # hour <dbl>, minute <dbl>, time_hour <dttm>, year.y <int>, type <chr>,
#> # manufacturer <chr>, model <chr>, engines <int>, seats <int>, speed <int>,
#> # engine <chr>

Because there are fewer planes than flights, and most flights have matching planes, the result
(284,170 rows) is similar to the inner join count. Planes never used in any flight appear with
NA for flight-specific columns.

4. Full Join {.unnumbered}

A full join includes all rows from both tables, matching where possible. Any rows that do not
match in either table are shown with NA in the missing fields.

567

full_join_result <- full_join(flights, planes, by = "tailnum")

full_join_result

#> # A tibble: 336,776 x 27
#> year.x month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 517 515 2 830 819
#> 2 2013 1 1 533 529 4 850 830
#> 3 2013 1 1 542 540 2 923 850
#> 4 2013 1 1 544 545 -1 1004 1022
#> 5 2013 1 1 554 600 -6 812 837
#> 6 2013 1 1 554 558 -4 740 728
#> 7 2013 1 1 555 600 -5 913 854
#> 8 2013 1 1 557 600 -3 709 723
#> 9 2013 1 1 557 600 -3 838 846
#> 10 2013 1 1 558 600 -2 753 745
#> # i 336,766 more rows
#> # i 19 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#> # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#> # hour <dbl>, minute <dbl>, time_hour <dttm>, year.y <int>, type <chr>,
#> # manufacturer <chr>, model <chr>, engines <int>, seats <int>, speed <int>,
#> # engine <chr>

Here, we see 336,776 rows again. Since flights is larger, the full join remains at 336,776.
Additional planes that are not used in any flights appear with NA in flight-related columns but
do not increase the total row count.

Summary Table: Flights per Aircraft Manufacturer

Next, we create a summary table of flights per aircraft manufacturer. We use the left join
result (left_join_result) so that all flights remain, even if plane information is missing. We
label these missing values as "Unknown".

manufacturer_summary <- left_join_result %>%
mutate(manufacturer = if_else(is.na(manufacturer), "Unknown", manufacturer)) %>%
count(manufacturer, sort = TRUE)

manufacturer_summary

568

#> # A tibble: 36 x 2
#> manufacturer n
#> <chr> <int>
#> 1 BOEING 82912
#> 2 EMBRAER 66068
#> 3 Unknown 52606
#> 4 AIRBUS 47302
#> 5 AIRBUS INDUSTRIE 40891
#> 6 BOMBARDIER INC 28272
#> 7 MCDONNELL DOUGLAS AIRCRAFT CO 8932
#> 8 MCDONNELL DOUGLAS 3998
#> 9 CANADAIR 1594
#> 10 MCDONNELL DOUGLAS CORPORATION 1259
#> # i 26 more rows

From the output, BOEING has the highest number of flights (82,912), followed by EM-
BRAER (66,068). A substantial number of flights (52,606) have no matching manufacturer
data, labelled as Unknown.

Bar Plot: Top Five Aircraft Manufacturers

Finally, we select the top five manufacturers and visualise them with a bar plot, displaying
the exact flight count above each bar.

top_manufacturers <- manufacturer_summary %>%
slice_max(n, n = 5)

top_manufacturers |> ggplot(aes(x = reorder(manufacturer, -n), y = n, fill = manufacturer)) +
geom_col(show.legend = FALSE, width = 0.4) +
Display the exact value above each bar, with thousand separators
geom_text(aes(label = scales::comma(n)), vjust = -0.3) +
Apply thousand separators to the y-axis
scale_y_continuous(labels = scales::comma) +
labs(

x = "Manufacturer",
y = "Number of Flights",
title = "Top 5 Aircraft Manufacturers by Number of Flights"

) +
theme_minimal()

569

82,912

66,068

52,606
47,302

40,891

0

20,000

40,000

60,000

80,000

BOEING EMBRAER Unknown AIRBUS AIRBUS INDUSTRIE
Manufacturer

N
um

be
r

of
 F

lig
ht

s
Top 5 Aircraft Manufacturers by Number of Flights

This chart confirms that Boeing-manufactured planes account for the largest share of flights,
followed by Embraer. The “Unknown” category represents flights for which plane data is
missing in the planes table. You will learn more about data visualisation techniques in
Chapter 7 of this book.

Return to Exercise 6.3.1

Lab 7: Data Visualisation

Solution Quiz 7.1

Question 1:

Which principle is the foundation of ggplot2’s structured approach to building graphs?

a) The Aesthetic Mapping Principle

b) The Facet Wrapping Technique

c) The Grammar of Graphics 3

d) The Scaling Transformation Theory

570

Question 2:

In a ggplot2 plot, which of the following best describes the role of aes()?

a) It specifies the dataset to be plotted.

b) It defines statistical transformations to apply to the data.

c) It maps data variables to visual properties, like colour or size. 3

d) It sets the coordinate system for the plot.

Question 3:

If you want to display the distribution of a single continuous variable and identify its modality
and skewness, which geom is most appropriate?

a) geom_point()

b) geom_bar()

c) geom_histogram() 3

d) geom_col()

Question 4:

When creating a boxplot to show the variation of a continuous variable across multiple cate-
gories, what do the “whiskers” typically represent?

a) The median value and the mean value.

b) The full range of the data, excluding outliers.

c) One standard deviation above and below the mean.

d) The maximum and minimum values after applying a 1.5 * IQR rule. 3

Question 5:

You have a dataset with a categorical variable Region and a continuous variable Sales. You
want to compare total sales across different regions. Which geom and aesthetic mapping would
be most appropriate?

a) geom_bar(aes(x = Region)), which internally counts the occurrences of each region.

571

b) geom_col(aes(x = Region, y = Sales)), which uses the actual Sales values for the
bar heights. 3

c) geom_line(aes(x = Region, y = Sales)), connecting points across regions.

d) geom_area(aes(x = Region, y = Sales)), to show cumulative totals over regions.

Question 6:

If you want to add a smoothing line (e.g., a regression line) to a scatter plot created with
geom_point(), which geom should you use and with what parameter to fit a linear model
without confidence intervals?

a) geom_smooth(method = "lm", se = FALSE) 3

b) geom_line(stat = "lm", se = TRUE)

c) geom_line(method = "regress", se = FALSE)

d) geom_smooth(method = "reg", confint = FALSE)

Question 7:

Consider you have a factor variable cyl representing the number of cylinders in the mtcars
dataset. If you want to create multiple plots (small multiples) for each value of cyl, which
ggplot2 function can you use?

a) facet_wrap(~ cyl) 3

b) facet_side(~ cyl)

c) group_by(cyl) followed by multiple geom_point() calls

d) geom_facet(cyl)

Question 8:

Which of the following statements about ggsave() is true?

a) ggsave() must be called before creating any plots for it to work correctly.

b) ggsave() saves the last plot displayed, and you can control the output format by
specifying the file extension. 3

c) ggsave() cannot control the width, height, or resolution of the output image.

d) ggsave() only saves plots as PDF files.

572

Question 9:

What is the purpose of setting group aesthetics in a ggplot, for example in a line plot?

a) To change the colour scale of all elements.

b) To ensure that discrete categories are grouped together for transformations like smooth-
ing.

c) To define which points belong to the same series, enabling lines to connect points within
groups instead of mixing data across categories. 3

d) To modify only the legend titles and labels.

Question 10:

When customizing themes, which of the following options is NOT directly controlled by a
theme() function in ggplot2?

a) Axis text size, angle, and colour.

b) Background grid lines and panel background.

c) The raw data values in the dataset. 3

d) The plot title alignment and style.

Return to Quiz 7.1

Solution Quiz 7.2

Question 1:

Which of the following is a key advantage of using Base R graphics for exploratory data
analysis?

a) They require additional packages.

b) They offer a quick, function-based approach with no dependencies 3

c) They utilise a layered grammar for complex plotting.

d) They automatically produce interactive visualisations.

573

Question 2:

Which function is the generic function in Base R for creating scatterplots, line graphs, and
other basic plots?

a) hist()

b) plot() 3

c) boxplot()

d) barplot()

Question 3:

Which function in Base R is specifically used to display data distributions as histograms?

a) pie()

b) plot()

c) hist() 3

d) boxplot()

Question 4:

What is the purpose of the breaks argument in the hist() function?

a) To set the colour of the bars.

b) To determine the bin width for the histogram 3

c) To label the axes.

d) To specify the main title.

Question 5:

Which graphical parameter in Base R is used to specify the colour of plot elements?

a) pch

b) lty

c) col 3

574

d) cex

Question 6:

The pch parameter in Base R plots is used to control:

a) The type of point symbol displayed 3

b) The line thickness.

c) The overall scaling of plot elements.

d) The arrangement of multiple plots.

Question 7:

Which function in Base R is used to adjust global graphical settings, such as margins and
layout arrangements?

a) plot()

b) par() 3

c) hist()

d) boxplot()

Question 8:

In a Base R scatter plot, which function is used to add a regression line?

a) lines()

b) abline() 3

c) curve()

d) segments()

Question 9:

What is one of the main reasons Base R graphics are considered advantageous over ggplot2
for certain tasks?

a) They require no additional packages since they are built into R 3

575

b) They offer more extensive theme options.

c) They are better suited for interactive visualisations.

d) They automatically manage data transformations.

Question 10:

When saving a Base R plot using the png() function, what is the purpose of calling dev.off()
afterwards?

a) To display the saved plot.

b) To open the saved file in a new window.

c) To close the graphics device and finalise the output file 3

d) To reset all graphical parameters.

Return to Quiz 7.2

Solution 7.1.2: Reproducing the Smoking, Gender, and Lifespan Chart

In this solution, we will demonstrate how to reproduce the chart that compares the average age
at death by smoking status for both males and females. The data comes from the Framingham
Heart Study and is contained in the heart dataset. Our aim is to filter, summarise, and
visualise the data using dplyr and ggplot2.

Importing and Inspecting the Data

First, we import the heart.xlsx file from the r-data directory using read_excel() and
inspect its structure with functions such as glimpse(). This step ensures that the dataset has
been loaded correctly and familiarises us with its variables.

library(tidyverse)
library(readxl)
library(janitor)

Import the dataset from the r-data directory
heart <- read_excel("r-data/heart.xlsx")
heart <- heart |> clean_names()

576

Inspect the data structure
glimpse(heart)

#> Rows: 5,209
#> Columns: 17
#> $ status <chr> "Dead", "Dead", "Alive", "Alive", "Alive", "Alive", "Al~
#> $ death_cause <chr> "Other", "Cancer", NA, NA, NA, NA, NA, "Other", NA, "Ce~
#> $ age_ch_ddiag <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 57, 55, 79,~
#> $ sex <chr> "Female", "Female", "Female", "Female", "Male", "Female~
#> $ age_at_start <dbl> 29, 41, 57, 39, 42, 58, 36, 53, 35, 52, 39, 33, 33, 57,~
#> $ height <dbl> 62.50, 59.75, 62.25, 65.75, 66.00, 61.75, 64.75, 65.50,~
#> $ weight <dbl> 140, 194, 132, 158, 156, 131, 136, 130, 194, 129, 179, ~
#> $ diastolic <dbl> 78, 92, 90, 80, 76, 92, 80, 80, 68, 78, 76, 68, 90, 76,~
#> $ systolic <dbl> 124, 144, 170, 128, 110, 176, 112, 114, 132, 124, 128, ~
#> $ mrw <dbl> 121, 183, 114, 123, 116, 117, 110, 99, 124, 106, 133, 1~
#> $ smoking <dbl> 0, 0, 10, 0, 20, 0, 15, 0, 0, 5, 30, 0, 0, 15, 30, 10, ~
#> $ age_at_death <dbl> 55, 57, NA, NA, NA, NA, NA, 77, NA, 82, NA, NA, NA, NA,~
#> $ cholesterol <dbl> NA, 181, 250, 242, 281, 196, 196, 276, 211, 284, 225, 2~
#> $ chol_status <chr> NA, "Desirable", "High", "High", "High", "Desirable", "~
#> $ bp_status <chr> "Normal", "High", "High", "Normal", "Optimal", "High", ~
#> $ weight_status <chr> "Overweight", "Overweight", "Overweight", "Overweight",~
#> $ smoking_status <chr> "Non-smoker", "Non-smoker", "Moderate (6-15)", "Non-smo~

The heart dataset comprises 5,209 observations and 17 variables, including important fields
such as sex, age_at_death, and smoking_status.

We then transform the variable smoking_status as ordered factor:

heart <- heart |>
mutate(smoking_status = factor(smoking_status,

levels = c(
"Non-smoker", "Light (1-5)", "Moderate (6-15)", "Heavy (16-25)",
"Very Heavy (> 25)"

)
))

Filtering and Summarising the Data

Next, we filter the data to remove any observations with missing values in the smoking_status
column. We then group the data by both smoking_status and sex, calculating the mean of
age_at_death for each group. This produces a new dataset containing the average age at
death per smoking category and gender.

577

heart_summary <- heart %>%
filter(!is.na(smoking_status)) %>%
group_by(smoking_status, sex) %>%
summarise(

avg_age_at_death = mean(age_at_death, na.rm = TRUE),
.groups = "drop"

)

Display the summarised data
heart_summary

#> # A tibble: 10 x 3
#> smoking_status sex avg_age_at_death
#> <fct> <chr> <dbl>
#> 1 Non-smoker Female 73.9
#> 2 Non-smoker Male 73.5
#> 3 Light (1-5) Female 70.4
#> 4 Light (1-5) Male 70.7
#> 5 Moderate (6-15) Female 67.1
#> 6 Moderate (6-15) Male 70.1
#> 7 Heavy (16-25) Female 67.0
#> 8 Heavy (16-25) Male 68.3
#> 9 Very Heavy (> 25) Female 67.2
#> 10 Very Heavy (> 25) Male 65.1

Visualising the Results

We then use ggplot2 to create a horizontal bar chart. In this visualisation, the x-axis displays
the average age at death, while the y-axis represents the different smoking status categories.
The chart is facetted by sex to provide separate panels for females and males. The fill colour
differentiates the smoking categories, and the plot includes a clear title and axis labels.

heart_summary |>
ggplot(aes(x = avg_age_at_death, y = smoking_status, fill = smoking_status)) +
geom_col(show.legend = FALSE) +
facet_wrap(~sex) +
labs(

title = "Smoking, Gender, and Lifespan: Comparing Average Age at Death",
x = "Age at Death",
y = "Smoking Status"

578

) +
theme_bw()

Female Male

0 20 40 60 0 20 40 60

Non−smoker

Light (1−5)

Moderate (6−15)

Heavy (16−25)

Very Heavy (> 25)

Age at Death

S
m

ok
in

g
S

ta
tu

s

Smoking, Gender, and Lifespan: Comparing Average Age at Death

Interpretation

This chart clearly illustrates how the average age at death differs across smoking categories
and between genders. Typically, non-smokers appear to have a higher average age at death
compared to heavier smokers. Additionally, subtle differences between females and males can
be observed, highlighting the significance of considering both smoking status and sex when
analysing lifespan.

Return to Exercise 7.1.2

Lab 8: Statistical Concept

Solution Quiz 8.0

Question 1:

Data that focuses on characteristics or qualities rather than numbers is known as:

579

a) Quantitative data

b) Discrete data

c) Qualitative data 3

d) Continuous data

Question 2:

Which of the following is an example of discrete data?

a) The height of students in a class

b) The number of cars in a parking lot 3

c) The amount of rainfall in a day

d) The time taken to complete a task

Question 3:

Quantitative data that can take on any value within a given range is referred to as:

a) Categorical data

b) Nominal data

c) Discrete data

d) Continuous data 3

Question 4:

Qualitative data differs from quantitative data because qualitative data:
a) Can only be expressed with numbers
b) Has meaningful mathematical operations
c) Describes categories or groups 3 d) Is always collected from secondary sources

Question 5:

Primary data refers to data that:

a) Has been previously published by others

580

b) Comes directly from observation or experiment 3

c) Is always collected online

d) Is obtained only from government agencies

Question 6:

A list of colours observed in a garden (e.g., red, yellow, green) is an example of:

a) Quantitative continuous data

b) Quantitative discrete data

c) Qualitative data 3

d) Secondary data

Question 7:

Which of the following statements is true?

a) Data is always meaningful without analysis

b) Data, once processed, is known as information 3

c) Data and information are identical concepts

d) Information is just another term for data collection

Question 8:

A measurement like “23 people attended the seminar” is an example of:

a) Qualitative data

b) Continuous data

c) Discrete data 3

d) Nominal scale data

Question 9:

Data collected for the first time for a specific research purpose is known as:

581

a) Secondary data

b) Primary data 3

c) Nominal data

d) Discrete data

Question 10:

A researcher using census data from a national statistics bureau is working with:

a) Primary data

b) Secondary data 3

c) Continuous data

d) Nominal data

Return to Quiz 8.0

Solution Quiz 8.1

Question 1:

A complete set of elements (people, items) that we are interested in studying is called a:

a) Sample

b) Population 3

c) Parameter

d) Statistic

Question 2:

A subset of a population used to make inferences about the population is called a:

a) Population

b) Sample 3

582

c) Statistic

d) Parameter

Question 3:

A value that describes a characteristic of an entire population (e.g., population mean) is known
as a:

a) Statistic

b) Parameter 3

c) Variable

d) Sample estimate

Question 4:

A value computed from sample data (e.g., sample mean) that is used to estimate a population
parameter is called a:

a) Parameter

b) Statistic 3

c) Variable

d) Census

Question 5:

Why do we often rely on samples rather than studying entire populations?

a) It is always more accurate.

b) Populations do not have parameters.

c) Sampling is often more feasible, less costly, and time-efficient 3

d) Populations are always small and uninteresting.

Question 6:

Statistical thinking involves understanding how to:

583

a) Manipulate data without purpose

b) Draw meaningful conclusions from data under uncertainty 3

c) Avoid using data in decision-making

d) Ignore variability in data

Question 7:

If a population parameter is 𝜇, the corresponding sample statistic used to estimate it is typi-
cally:

a) s

b) 𝜎

c) ̄𝑥 3

d) p

Question 8:

When we attempt to understand the variability in data and the uncertainty in our conclusions,
we are engaging in:

a) Statistical thinking 3

b) Non-statistical reasoning

c) Data neglect

d) Parameter ignorance

Question 9:

If it’s too expensive or impractical to study an entire population, we often conduct a:

a) Census

b) Biased survey

c) Sample study 3

d) Parameter test

584

Question 10:

The process of using sample data to make conclusions about a larger population is known as:

a) Data summarisation

b) Descriptive statistics

c) Statistical inference 3

d) Variable classification

Return to Quiz 8.1

Solution- Exercise 8.1.2: Professor Francisca - A Generous Giver

Professor Francisca, the Vice-Chancellor of Thomas Adewumi University, Kwara, Nigeria, and
a Professor of Computer Science, is known for her generosity. Each week, she awards monetary
prizes (in dollars) to the best student in the weekly Computer Science assignment for the DTS
204 module. The prize amounts are as follows:

495, 503, 503, 498, 503, 505, 503, 500, 501, 489, 498, 488, 499, 497, 508, 507, 507, 509, 508,
503.

Using R, complete the following tasks to analyze the data:

Task 1: Central Tendency

1. Calculate the Mean
money <- c(495, 503, 503, 498, 503, 505, 503, 500, 501, 489, 498, 488, 499, 497, 508, 507, 507, 509, 508, 503)
mean(money)

#> [1] 501.2

2. Calculate the Median
median(money)

#> [1] 503

3. Determine the Mode

585

statistical_mode <- function(x) {
uniqx <- unique(x)
uniqx[which.max(tabulate(match(x, uniqx)))]

}
statistical_mode(money)

#> [1] 503

Task 2: Measure of Spread

1. Calculate the Range
range_value <- max(money) - min(money)
range_value

#> [1] 21

2. Determine the Standard Deviation
sd(money)

#> [1] 5.881282

The standard deviation helps us understand the consistency of the amounts given out.

3. Find the Variance
var(money)

#> [1] 34.58947

Variance is the square of the standard deviation.

Task 3: Measure of Partition

1. Calculate the Interquartile Range (IQR)
IQR(money)

#> [1] 7.5

The IQR measures the spread of the middle 50% of the amounts.

2. Find the Quartiles
quantile(money)

586

#> 0% 25% 50% 75% 100%
#> 488.0 498.0 503.0 505.5 509.0

The quartiles reveal the distribution of the amounts.

3. Calculate Percentile Ranks

To determine the percentile ranks for $488 (minimum), $509 (maximum), and $503:
ecdf_money <- ecdf(money)
percentile_488 <- ecdf_money(488) * 100 # Percentile rank of $488

percentile_509 <- ecdf_money(509) * 100 # Percentile rank of $509

percentile_503 <- ecdf_money(503) * 100 # Percentile rank of $503

• Percentile rank of $488: Indicates the percentage of amounts less than or equal
to $488.

• Percentile rank of $509: Indicates the percentage of amounts less than or equal
to $509.

• Percentile rank of $503: Indicates the position of $503 within the distribution.

Interpretation

• The mean amount is $501.2, while the median is $503. This slight difference suggests a
relatively symmetrical distribution with a slight skew.

• The mode is $503, indicating that this amount was given out most frequently.

• The range of $21 shows the variability between the smallest and largest amounts.

• The standard deviation and variance quantify the overall spread of the amounts.

• The IQR compares the variability of the middle 50% to the overall range, revealing
insights about data dispersion.

• The quartiles help understand how the amounts are distributed across the dataset.

• The percentile ranks position specific amounts within the overall distribution, providing
context for their relative standing.

Return to Exercise 8.1.2

587

Solution Quiz 8.2

Question 1:

Which set of values is included in a five-number summary?

a) Mean, Median, Mode, IQR, Standard Deviation

b) Minimum, Q1, Median, Q3, Maximum 3

c) Minimum, Mean, Mode, Maximum, Range

d) Q1, Q2, Q3, Q4, Q5

Question 2:

The interquartile range (IQR) is calculated as:

a) Q2 - Q1

b) Q3 - Median

c) Q3 - Q1 3

d) Median - Minimum

Question 3:

A boxplot is useful for:

a) Displaying frequencies of categorical data

b) Showing the distribution and identifying outliers 3

c) Calculating correlations between variables

d) Displaying only the mean value

Question 4:

Which value in a five-number summary represents the median of the entire dataset?

a) Q1

b) Q2 (Median) 3

588

c) Q3

d) Minimum

Question 5:

If a dataset has many outliers, a boxplot can help by:

a) Ignoring them completely

b) Highlighting them as points beyond the whiskers 3

c) Removing them automatically

d) Converting them to the mean value

Question 6:

The IQR focuses on the middle 50% of data, making it a good measure of:

a) Central tendency

b) Spread that is not influenced by extreme values 3

c) Correlation

d) Nominal categories

Question 7:

In R, the boxplot() function by default displays:

a) A histogram

b) A correlation matrix

c) A five-number summary depiction 3

d) A scatter plot

Question 8:

The difference between the maximum and minimum values in a dataset is called the:

a) Standard deviation

589

b) IQR

c) Range 3

d) Variance

Question 9:

A box-and-whisker plot typically does NOT show:

a) Median

b) Outliers

c) Mean 3

d) Interquartile range

Question 10:

When comparing two datasets using boxplots placed side by side, you can quickly assess
differences in:

a) Central tendency and spread 3

b) Exact individual data points

c) Correlation coefficients

d) Detailed frequency distributions

Return to Quiz 8.2

Solution- Exercise 8.2.1

Thirty farmers were surveyed about the number of farm workers they employ during a typical
harvest season in Igboho, Oyo State, Nigeria. Their responses are as follows:

4, 5, 6, 5, 1, 2, 8, 0, 4, 6, 7, 8, 4, 6, 7, 9, 8, 6, 7, 5, 5, 4, 2, 1, 9, 3, 3, 4, 6, 4.

590

Task 1: Calculate the Mean, Median, and Mode

Calculating the Mean:

The mean is the sum of all observations divided by the number of observations.

Total number of farm workers employed:

Total = 4 + 5 + 6 + ⋯ + 4 = 149

Number of observations (n): 30

Mean = Total
𝑛 = 149

30 ≈ 4.97

Calculating the Median:

The median is the middle value when the data are arranged in ascending order.

First, arrange the data:

0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9

Since there are 30 observations (an even number), the median is the average of the 15th and
16th values.

15th value: 5

16th value: 5

Median:

Median = 5 + 5
2 = 5

Calculating the Mode:

The mode is the value that occurs most frequently.

Frequency of each number:

• 4 occurs 5 times
• 6 occurs 5 times

591

Both 4 and 6 have the highest frequency.

Therefore, the dataset is bimodal with modes at 4 and 6.

This is how to calculate the mean, median, and mode in R:

farm_workers <- c(4, 5, 6, 5, 1, 2, 8, 0, 4, 6, 7, 8, 4, 6, 7, 9, 8, 6, 7, 5, 5, 4, 2, 1, 9, 3, 3, 4, 6, 4)

Mean
mean(farm_workers)

#> [1] 4.966667

Median
median(farm_workers)

#> [1] 5

Mode
statistical_mode <- function(x) {
uniqx <- unique(x)
freq <- tabulate(match(x, uniqx))
uniqx[freq == max(freq)]

}

statistical_mode(farm_workers)

#> [1] 4

Task 2: Determine the Range and Standard Deviation

Calculating the Range:

The range is the difference between the maximum and minimum values.

Minimum value:

Min = 0

Maximum value:

592

Max = 9

Range:

Range = Max − Min = 9 − 0 = 9

Calculating the Standard Deviation:

The standard deviation measures the amount of variation or dispersion in the dataset.

This is how to calculate the range and standard deviation in R:

Range
range_values <- range(farm_workers)
range_values # Outputs the minimum and maximum values

#> [1] 0 9

range <- diff(range_values)
range # Outputs the range

#> [1] 9

Standard Deviation
sd(farm_workers)

#> [1] 2.385059

Task 3: Create a Box-and-Whisker Plot of the Distribution

To visualise the distribution of the number of farm workers employed, you can create a box-
and-whisker plot.

This is how to create the box plot in R:

boxplot(farm_workers,
main = "Box-and-Whisker Plot of Number of Farm Workers",
ylab = "Number of Workers",
col = "green"

)

593

0
2

4
6

8

Box−and−Whisker Plot of Number of Farm Workers
N

um
be

r
of

 W
or

ke
rs

Return to Exercise 8.2.1

Solution Quiz 8.3

Question 1:

A scale that categorises data without any order is known as:

a) Nominal 3

b) Ordinal

c) Interval

d) Ratio

Question 2:

Which scale provides both order and equal intervals but no true zero point?

a) Nominal

b) Ordinal

594

c) Interval 3

d) Ratio

Question 3:

Which scale allows for meaningful ratios and has a true zero?

a) Nominal

b) Ordinal

c) Interval

d) Ratio 3

Question 4:

Educational levels ranked as “Primary, Secondary, Tertiary” represent which scale?

a) Nominal

b) Ordinal 3

c) Interval

d) Ratio

Question 5:

Temperatures in Celsius or Fahrenheit are examples of which scale?

a) Nominal

b) Ordinal

c) Interval 3

d) Ratio

Question 6:

Blood types (A, B, AB, O) are measured on which scale?

a) Nominal 3

595

b) Ordinal

c) Interval

d) Ratio

Question 7:

The number of items sold in a store (e.g., 0, 5, 10 units) is best described by which scale?

a) Nominal

b) Ordinal

c) Ratio 3

d) Interval

Question 8:

Customer satisfaction ratings (e.g., Satisfied, Neutral, Unsatisfied) belong to which scale?

a) Nominal

b) Ordinal 3

c) Interval

d) Ratio

Question 9:

A key difference between interval and ratio scales is that ratio scales have:

a) Categories only

b) A meaningful zero point 3

c) No ordering capability

d) Equal intervals that are meaningless

Question 10:

IQ scores are often treated as which type of scale?

596

a) Nominal

b) Ordinal

c) Interval 3

d) Ratio

Return to Quiz 8.3

Solution-Exercise 8.3.1: Identify the Scale

1. Blood pressure readings (e.g., 120 mmHg, 130 mmHg)

Answer: Interval Scale

Explanation:

• Numerical Data with Equal Intervals: Blood pressure readings are numerical
values where the difference between measurements is consistent (e.g., the difference
between 120 mmHg and 130 mmHg is the same as between 130 mmHg and 140
mmHg).

• No True Zero Point: In the context of blood pressure, a reading of 0 mmHg is not
meaningful for living humans; it does not represent the absence of blood pressure
but rather an unmeasurable or non-viable state.

• Implications: Because there is no absolute zero, ratios are not meaningful (e.g.,
we cannot say that 120 mmHg is twice as much as 60 mmHg in a meaningful way).

2. Type of car owned (e.g., Sedan, SUV, Truck)

Answer: Nominal Scale

Reason:

• Categorical Data without Order: The types of cars are categories used to label
different groups. There is no inherent ranking or order among Sedan, SUV, and
Truck.

• Statistical Analysis: Only frequency counts and mode are appropriate for nomi-
nal data. Calculations like mean or median are not meaningful.

3. Rankings in a cooking competition (e.g., 1st, 2nd, 3rd)

Answer: Ordinal Scale

Reason:

597

• Ordered Categories: The rankings indicate a clear order of performance, with
1st being better than 2nd, and so on.

• Unequal Intervals: The difference in skill or points between 1st and 2nd place
may not be the same as between 2nd and 3rd place.

• Statistical Analysis: Median and mode are appropriate. Mean is not meaningful
due to unequal intervals.

4. Test scores out of 100 (e.g., 85, 90, 75)

Answer: Ratio Scale

Reason:

• Numerical Data with Equal Intervals: The differences between scores are
consistent, and a score increase from 75 to 85 is the same increment as from 85 to
95.

• Meaningful Zero Point: A score of 0 represents the absence of correct answers,
providing an absolute zero.

• Ratios are Meaningful: It’s valid to say that a score of 90 is twice as high as a
score of 45.

• Statistical Analysis: All statistical measures are applicable, including mean, me-
dian, mode, and coefficient of variation.

5. Age of students in years

Answer: Ratio Scale

Reason:

• Numerical Data with Equal Intervals: The difference between ages is con-
sistent; the interval between 10 and 15 years is the same as between 20 and 25
years.

• Absolute Zero Point: Age starts at zero (birth), representing a true zero point.

• Ratios are Meaningful: It makes sense to say that a 20-year-old is twice as old
as a 10-year-old.

• Statistical Analysis: All statistical operations are valid, allowing for comprehen-
sive analysis.

Return to Exercise 8.3.1

598

Lab 9: Sampling Techniques

Solution 9.1.1: Simple Random Sampling with the Penguins Dataset

Load the required package
library(palmerpenguins)

Inspect the penguins dataset
summary(penguins)

#> species island bill_length_mm bill_depth_mm
#> Adelie :152 Biscoe :168 Min. :32.10 Min. :13.10
#> Chinstrap: 68 Dream :124 1st Qu.:39.23 1st Qu.:15.60
#> Gentoo :124 Torgersen: 52 Median :44.45 Median :17.30
#> Mean :43.92 Mean :17.15
#> 3rd Qu.:48.50 3rd Qu.:18.70
#> Max. :59.60 Max. :21.50
#> NA's :2 NA's :2
#> flipper_length_mm body_mass_g sex year
#> Min. :172.0 Min. :2700 female:165 Min. :2007
#> 1st Qu.:190.0 1st Qu.:3550 male :168 1st Qu.:2007
#> Median :197.0 Median :4050 NA's : 11 Median :2008
#> Mean :200.9 Mean :4202 Mean :2008
#> 3rd Qu.:213.0 3rd Qu.:4750 3rd Qu.:2009
#> Max. :231.0 Max. :6300 Max. :2009
#> NA's :2 NA's :2

Remove rows with missing values
penguins_complete <- na.omit(penguins)

Check how many rows remain
nrow(penguins_complete)

#> [1] 333

Set a seed for reproducibility
set.seed(123)

Select a random sample of 10 penguins
sample_indices <- sample(1:nrow(penguins_complete), size = 10, replace = FALSE)

599

penguins_sample <- penguins_complete[sample_indices,]

Calculate the mean body mass of the entire dataset
mean_full <- mean(penguins_complete$body_mass_g)

Calculate the mean body mass of the sampled penguins
mean_sample <- mean(penguins_sample$body_mass_g)

Print the results
cat("Mean body mass (entire dataset):", mean_full, "grams\n")

#> Mean body mass (entire dataset): 4207.057 grams

cat("Mean body mass (sample of 10):", mean_sample, "grams\n")

#> Mean body mass (sample of 10): 4550 grams

Reflection:

In this exercise, the sample mean (approximately 4550 grams) is higher than the full dataset
mean (approximately 4207 grams). This difference can occur because a sample of just 10
penguins may not perfectly represent the entire penguin population. With a small sample size,
random chance can lead to a subset of penguins that are, on average, heavier (or lighter) than
the overall population. If you were to increase the sample size, you’d generally expect the
sample mean to get closer to the true mean of the full dataset.

Return to Exercise 9.1.1

Solution 9.1.2: Stratified Sampling with the Diamonds Dataset

library(dplyr)

Inspect the diamonds dataset
glimpse(diamonds)

#> Rows: 53,940
#> Columns: 10
#> $ carat <dbl> 0.23, 0.21, 0.23, 0.29, 0.31, 0.24, 0.24, 0.26, 0.22, 0.23, 0.~
#> $ cut <ord> Ideal, Premium, Good, Premium, Good, Very Good, Very Good, Ver~

600

#> $ color <ord> E, E, E, I, J, J, I, H, E, H, J, J, F, J, E, E, I, J, J, J, I,~
#> $ clarity <ord> SI2, SI1, VS1, VS2, SI2, VVS2, VVS1, SI1, VS2, VS1, SI1, VS1, ~
#> $ depth <dbl> 61.5, 59.8, 56.9, 62.4, 63.3, 62.8, 62.3, 61.9, 65.1, 59.4, 64~
#> $ table <dbl> 55, 61, 65, 58, 58, 57, 57, 55, 61, 61, 55, 56, 61, 54, 62, 58~
#> $ price <int> 326, 326, 327, 334, 335, 336, 336, 337, 337, 338, 339, 340, 34~
#> $ x <dbl> 3.95, 3.89, 4.05, 4.20, 4.34, 3.94, 3.95, 4.07, 3.87, 4.00, 4.~
#> $ y <dbl> 3.98, 3.84, 4.07, 4.23, 4.35, 3.96, 3.98, 4.11, 3.78, 4.05, 4.~
#> $ z <dbl> 2.43, 2.31, 2.31, 2.63, 2.75, 2.48, 2.47, 2.53, 2.49, 2.39, 2.~

diamonds |> count(cut)

#> # A tibble: 5 x 2
#> cut n
#> <ord> <int>
#> 1 Fair 1610
#> 2 Good 4906
#> 3 Very Good 12082
#> 4 Premium 13791
#> 5 Ideal 21551

Calculate the proportions of each cut in the full dataset
full_props <- prop.table(table(diamonds$cut))
full_props

#>
#> Fair Good Very Good Premium Ideal
#> 0.02984798 0.09095291 0.22398962 0.25567297 0.39953652

Set a total sample size
sample_size <- 500

Perform stratified sampling based on cut
set.seed(123)
stratified_sample <- diamonds %>%
group_by(cut) %>%
sample_frac(sample_size / nrow(diamonds))

Calculate the proportions of each cut in the stratified sample
sample_props <- prop.table(table(stratified_sample$cut))

Compare the distributions
full_props

601

#>
#> Fair Good Very Good Premium Ideal
#> 0.02984798 0.09095291 0.22398962 0.25567297 0.39953652

sample_props

#>
#> Fair Good Very Good Premium Ideal
#> 0.030 0.090 0.224 0.256 0.400

Reflection:

In this example, the stratified sampling process successfully captured proportions of cut cate-
gories that closely mirror the full dataset. The original distribution had approximately:

• Fair: 2.98%

• Good: 9.10%

• Very Good: 22.40%

• Premium: 25.57%

• Ideal: 39.95%

Our stratified sample resulted in:

• Fair: 3.0%

• Good: 9.0%

• Very Good: 22.4%

• Premium: 25.6%

• Ideal: 40.0%

These proportions are nearly identical. This demonstrates the strength of stratified sampling:
by using known subgroup proportions, we can ensure that even a relatively small sample re-
mains representative of the underlying categories. If we had used simple random sampling,
our sample’s distribution might have deviated more from the true population proportions. In
scenarios where preserving the population structure is important—such as when analysing
variations across categories—stratified sampling provides a more reliable and balanced ap-
proach.

Return to Exercise 9.1.2

602

Solution 9.1.3: Cluster Sampling with a Simulated Dataset

set.seed(123)

Suppose we have 10 cities (clusters), each with 200 customers
cities <- rep(paste0("City_", 1:10), each = 200)
n <- length(cities) # total number of customers

Simulate a dataset of customers
Monthly spending is drawn from a normal distribution, but let's vary it by city
For simplicity, we’ll say city 1 has a higher spending average, and so forth.
spending <- rnorm(n, mean = 500 + as.numeric(sub("City_", "", cities)) * 10, sd = 50)

customers <- data.frame(
customer_id = 1:n,
city = cities,
monthly_spending = spending

)

Examine the full population mean monthly spending
mean_full <- mean(customers$monthly_spending)

Perform cluster sampling:
Select, for example, 3 cities at random
selected_cities <- sample(unique(customers$city), size = 3, replace = FALSE)

Extract customers from the selected cities
cluster_sample <- subset(customers, city %in% selected_cities)

Calculate the mean monthly spending in the cluster sample
mean_cluster_sample <- mean(cluster_sample$monthly_spending)

cat("Mean monthly spending (full population):", round(mean_full, 2), "\n")

#> Mean monthly spending (full population): 556.46

cat("Mean monthly spending (cluster sample):", round(mean_cluster_sample, 2), "\n")

#> Mean monthly spending (cluster sample): 554.82

603

Reflection:

The mean monthly spending for the entire population is about 556.46, while the cluster sam-
ple’s mean is 554.82, indicating a close match. This suggests that the chosen clusters captured
a reasonably representative snapshot of the overall population.

However, if different clusters were selected, the sample mean might have differed more, es-
pecially if those clusters had unusual spending patterns. Choosing more clusters typically
improves representativeness but comes with additional cost and effort. Ultimately, cluster
sampling is a compromise: it’s more practical and efficient than sampling individuals spread
across all clusters, while still offering a fairly accurate estimate of the population’s character-
istics.

Return to Exercise 9.1.3

Solution 9.1.4: Systematic Sampling on a Simple List

Create a vector of individuals
individuals <- 1:1000

Define the desired sample size
sample_size <- 100

Calculate k (the interval)
k <- length(individuals) / sample_size

Set a seed for reproducibility
set.seed(123)

Choose a random starting point between 1 and k
start <- sample(1:k, 1)
start

#> [1] 3

Select every k-th individual after the starting point
systematic_sample <- individuals[seq(from = start, to = length(individuals), by = k)]

Check the length of the sample
length(systematic_sample)

#> [1] 100

604

Verify the pattern (difference between consecutive elements should be k)
diff(systematic_sample)

#> [1] 10
#> [26] 10
#> [51] 10
#> [76] 10

Print the first few selected IDs
head(systematic_sample)

#> [1] 3 13 23 33 43 53

Now experiment with a different sample size, say 50 (k = 1000/50 = 20)

Try a sample size of 50 (k = 1000/50 = 20)

sample_size_50 <- 50
k_50 <- length(individuals) / sample_size_50
start_50 <- sample(1:k_50, 1)
systematic_sample_50 <- individuals[seq(from = start_50, to = length(individuals), by = k_50)]

length(systematic_sample_50)

#> [1] 50

head(systematic_sample_50)

#> [1] 14 34 54 74 94 114

Now experiment with a different sample size, say 20 (k = 1000/20 = 50)

sample_size_20 <- 20
k_20 <- length(individuals) / sample_size_20
start_20 <- sample(1:k_20, 1)
systematic_sample_20 <- individuals[seq(from = start_20, to = length(individuals), by = k_20)]

length(systematic_sample_20)

605

#> [1] 20

head(systematic_sample_20)

#> [1] 3 53 103 153 203 253

Reflection:

With a sample size of 100 (k=10), the selected IDs start at 3 and increment by 10 (e.g., 3, 13,
23…), covering the full range of 1 to 1000 at relatively tight intervals. This provides a fairly
even spread across the list.

When the sample size is reduced to 50 (k=20), the sample begins at 14 and then jumps every
20 IDs (e.g., 14, 34, 54, …), resulting in a sparser coverage of the list. While still systematic,
these increments skip more numbers between selections.

With a sample size of 20 (k=50), the coverage is even sparser (e.g., 3, 53, 103…), selecting every
50th ID. This leaves large gaps and captures fewer points along the list, potentially missing
subtler patterns.

These differences highlight how changing the sample size (and thus k) affects the granularity of
coverage. More frequent intervals (small k) give a denser sampling and may better represent
variability across the dataset. Larger intervals (large k) might be more efficient but could
risk missing important variations if the data has underlying patterns. Systematic sampling is
easy to implement and ensures even coverage, but the choice of k and the starting point can
significantly influence which individuals get selected.

Return to Exercise 9.1.4

Solution Quiz 9.1: Probability Sampling

Question 1:

What is the defining feature of probability sampling methods?

a) They always use large sample sizes

b) Each member of the population has a known, nonzero chance of selection 3

c) They never require a sampling frame

d) They rely on the researcher’s judgment

606

Question 2:

In simple random sampling (SRS), every member of the population:

a) Has no chance of being selected

b) Is selected to represent different subgroups

c) Has an equal probability of being selected 3

d) Is chosen based on convenience

Question 3:

Stratified sampling involves:

a) Selecting whole groups at once

b) Sampling every kth individual

c) Ensuring subgroups are represented proportionally 3

d) Selecting individuals recommended by others

Question 4:

Which method is best if you know certain subgroups (strata) differ and you want each to be
represented in proportion to their size?

a) Simple random sampling

b) Stratified sampling 3

c) Cluster sampling

d) Convenience sampling

Question 5:

Cluster sampling is typically chosen because:

a) It is guaranteed to be perfectly representative

b) It reduces cost and logistical complexity 3

c) It involves selecting individuals from every subgroup

607

d) It ensures each individual has the same probability of selection as in SRS

Question 6:

In a national health survey using cluster sampling, which of the following represents a “clus-
ter”?

a) A randomly chosen patient from all over the country

b) A randomly selected set of hospitals 3

c) A proportionate sample of age groups

d) Every 10th patient in a hospital list

Question 7:

Systematic sampling selects individuals by:

a) Relying on personal judgment

b) Selecting every kth individual after a random start 3

c) Dividing the population into strata

d) Choosing only those easiest to reach

Question 8:

If the population is 10,000 units and you need a sample of 100, the interval k in systematic
sampling is:

a) 10 (10,000 ÷ 1,000)

b) 100 (10,000 ÷ 100) 3

c) 20 (10,000 ÷ 500)

d) 50 (10,000 ÷ 200)

Question 9:

One advantage of systematic sampling is:

a) It ensures no bias will ever occur

608

b) It provides a convenient and even spread of the sample 3

c) It requires no sampling frame

d) It automatically includes all subgroups

Question 10:

Which of the following is NOT a probability sampling method?

a) Simple random sampling

b) Stratified sampling

c) Cluster sampling

d) Convenience sampling 3

Return to Quiz 9.1

Solution Quiz 9.2: Non-Probability Sampling

Question 1:

Non-probability sampling methods are often chosen because:

a) They guarantee generalizable results

b) They are cheaper, faster, or more practical 3

c) They eliminate all forms of bias

d) They require a complete list of the population

Question 2:

Which method involves selecting participants who are easiest to reach?

a) Convenience sampling 3

b) Snowball sampling

c) Purposive sampling

609

d) Quota sampling

Question 3:

Snowball sampling is most useful for:

a) Large, well-documented populations

b) Populations where every member is easily identified

c) Hidden or hard-to-reach populations 3

d) Ensuring random selection of subgroups

Question 4:

In snowball sampling, the sample grows by:

a) Randomly picking individuals from a list

b) Selecting every kth individual

c) Asking initial participants to refer others 3

d) Dividing the population into equal parts

Question 5:

Judgmental (purposive) sampling relies on:

a) Each member of the population having an equal chance

b) The researcher’s expertise and judgment 3

c) Selecting individuals based solely on their availability

d) A systematic interval selection

Question 6:

A researcher who specifically seeks out top experts or key informants in a field is using:

a) Purposive (judgmental) sampling 3

b) Cluster sampling

610

c) Systematic sampling

d) Simple random sampling

Question 7:

Quota sampling ensures subgroups are represented by:

a) Randomly selecting from each subgroup

b) Matching known proportions but using non-random selection 3

c) Following a strict interval for selection

d) Relying on participant referrals

Return to Quiz 9.2

Lab 10: Data Science Concept

Solution Quiz 10.1

Question 1:

Data science is considered interdisciplinary because it involves the integration of:

a) Mathematics, domain expertise, and biological sciences

b) Programming, mathematics/statistics, and domain expertise 3

c) Philosophy, ethics, and data engineering

d) Chemistry, physics, and computer science

Question 2:

The iterative nature of the data science lifecycle is essential for:

a) Ensuring a one-time solution

b) Continuous refinement and improved insights 3

c) Avoiding communication and visualisation steps

611

d) Reducing time spent on data wrangling

Question 3:

In the context of anomaly detection, which of the following scenarios is most relevant?

a) Predicting future sales

b) Identifying fraudulent transactions 3

c) Recommending products to customers

d) Forecasting weather trends

Question 4:

Why is domain expertise considered critical in data science projects?

a) To eliminate the need for reproducible workflows

b) To ensure analyses are contextually accurate and meaningful 3

c) To substitute for statistical reasoning

d) To automate the cleaning process

Question 5:

Which of the following ethical considerations is essential in data science?

a) Automating decision-making without human oversight

b) Mitigating bias and ensuring fairness 3

c) Replacing statistical methods with machine learning

d) Eliminating reproducibility for scalability

Question 6:

In the healthcare analytics example, the role of predictive modelling primarily involves:

a) Replacing clinicians in decision-making

b) Identifying trends in patient demographics

612

c) Predicting patient readmissions and improving care 3

d) Tidying and transforming hospital data

Question 7:

During the “Tidy” phase of the data science lifecycle, what is the primary goal?

a) Creating dashboards for analysis

b) Organising data into a structured format for analysis 3

c) Designing machine learning models

d) Cleaning visualisations for stakeholder presentations

Question 8:

Which stage of the data science lifecycle involves crafting visual narratives to interpret re-
sults?

a) Model

b) Transform

c) Visualise 3

d) Import

Question 9:

Why is the “Communicate” phase considered critical in the data science lifecycle?

a) It automates repetitive data cleaning tasks

b) It presents findings clearly and persuasively to stakeholders 3

c) It eliminates the need for statistical reasoning

d) It directly replaces the “Model” phase

Question 10:

How does viewing data analysis as a cyclical lifecycle benefit complex projects?

a) Reduces the need for domain expertise

613

b) Supports iterative refinement and evolving datasets 3

c) Guarantees fixed solutions for all analyses

d) Simplifies reproducibility without documentation

Return to Quiz 10.1

Lab 11: Use Case Projects

General Solution Quiz 11

Question 1:

What is the main purpose of the pipe operator (|> or %>%) in R?

a) To run code in parallel.

b) To nest functions inside one another.

c) To pass the output of one function as the input to the next, improving code readability. 3

d) To automatically clean missing data.

Question 2:

In a reproducible R workflow (as discussed in early labs), which file type is commonly used to
document code, results, and narrative together?

a) CSV files

b) R Markdown (or Quarto) documents 3

c) PNG images

d) Excel spreadsheets

Question 3:

When creating a new RStudio Project to ensure reproducibility and organisation of your
analysis, what is one key advantage?

a) It automatically generates a machine learning model.

614

b) It sets the working directory to the project folder, simplifying relative paths. 3

c) It prevents all missing values.

d) It disables package installation from CRAN.

Question 4:

The principle of tidy data states that:

a) Each dataset should have no missing values.

b) Each column represents a variable, each row represents an observation, and each cell
contains a single value. 3

c) Each dataset must have at least 10 columns.

d) Each value in the dataset must be numeric.

Question 5:

Which dplyr verb is used to filter rows based on logical conditions?

a) select()

b) mutate()

c) filter() 3

d) summarise()

Question 6:

To create new columns or modify existing ones in your dataset using dplyr, you would use:

a) select()

b) mutate() 3

c) arrange()

d) group_by()

Question 7:

Which ggplot2 component maps data variables to visual properties like axes, colour, or size?

615

a) Theme

b) Facets

c) Aesthetics (aes()) 3

d) Scales

Question 8:

To reorder rows of data based on a variable’s value using dplyr, which function should be
applied?

a) rename()

b) arrange() 3

c) distinct()

d) count()

Question 9:

In the data science lifecycle discussed, which stage primarily involves creating charts, graphs,
or other graphical representations of data?

a) Import

b) Tidy

c) Transform

d) Visualise 3

Question 10:

What is the role of group_by() in conjunction with summarise()?

a) It imports a dataset from the internet.

b) It filters rows based on conditions.

c) It splits the data into groups, allowing summarised statistics per group. 3

d) It changes variable names.

616

Question 11:

When exploring data from a new dataset, which of the following is a best practice?

a) Immediately running complex models without understanding distributions.

b) Creating exploratory visualisations and computing descriptive statistics. 3

c) Ignoring missing values.

d) Never using glimpse() or head().

Question 12:

Which ggplot2 function would you use to create a boxplot?

a) geom_bar()

b) geom_point()

c) geom_boxplot() 3

d) geom_smooth()

Question 13:

Converting code, analysis, and narrative into a single reproducible document is commonly
achieved with:

a) read_csv() only.

b) Proprietary binary formats.

c) R Markdown (or Quarto) documents. 3

d) Manually copying results into Word documents.

Question 14:

Which operator in R is used to chain data operations in a logical sequence, making code more
readable?

a) %>% (from magrittr) or |> (native pipe) 3

b) $

617

c) *

d) =

Question 15:

Data science is often described as an intersection of three main areas. Which combination is
correct?

a) Domain expertise, mathematics/statistics, and computer science/programming. 3

b) Chemistry, physics, and biology.

c) Finance, marketing, and sales.

d) Geography, history, and literature.

Question 16:

In a data science project, why is communicating findings effectively so important?

a) It ensures the code runs faster.

b) It guarantees no missing values remain.

c) It enables stakeholders to understand insights and make informed decisions. 3

d) It replaces the need for data transformations.

Question 17:

When dealing with missing data, which is NOT a recommended strategy?

a) Identifying and quantifying missing values.

b) Imputing values using mean or median if appropriate.

c) Removing all data points and ignoring the missingness context. 3

d) Documenting how missing data was handled.

Question 18:

Which dplyr function extracts unique rows or identifies distinct values?

a) distinct() 3

618

b) rename()

c) relocate()

d) case_when()

Question 19:

Why are use case projects invaluable for learners transitioning from theory to practice?

a) They allow bypassing basic R syntax rules.

b) They simplify code without testing problem-solving skills.

c) They help integrate various skills, face real-world challenges, and deepen understanding.
3

d) They remove the need for documentation.

Question 20:

In the data science lifecycle, what is typically the final stage?

a) Model

b) Communicate 3

c) Tidy

d) Transform

Return to General Practice Quiz 11

619

B Downloading and Preparing the Data

To fully engage with the exercises and examples in this book, you’ll need to download the
datasets provided. The data is organized in a folder named r-data, which contains all the
files we’ll use throughout the chapters.

B.1 Downloading the Data

1. Access the Data Folder

Visit the following link to access the r-data folder on Google Drive:
https://bit.ly/r-data-directory or https://drive.google.com/drive/folders/1ZhI-
t94uZa82KD8hEN0f1WALfCiRFWCP

2. Download the r-data Folder

• Once you’re on the Google Drive page, you should see the r-data folder listed.
• Right-click on the r-data folder and select Download.
• Google Drive will compress the folder into a ZIP file before downloading it to your

computer.

3. Unzip the Folder

• After the download is complete, locate the ZIP file on your computer (usually in
your Downloads folder).

• Extract the contents of the ZIP file:
– Windows: Right-click the ZIP file and select Extract All, then follow the

prompts.
– macOS: Double-click the ZIP file to extract it.
– Linux: Right-click and select Extract Here, or use the command line unzip

filename.zip.

4. Verify the Contents

• Open the extracted r-data folder to ensure all files are present.
• You should see various datasets in formats like CSV, Excel, and others, which we’ll

use in different labs.

620

https://bit.ly/r-data-directory
https://drive.google.com/drive/folders/1ZhI-t94uZa82KD8hEN0f1WALfCiRFWCP
https://drive.google.com/drive/folders/1ZhI-t94uZa82KD8hEN0f1WALfCiRFWCP

B.2 Setting Up Your Working Directory

To keep your work organized and ensure consistency across exercises, we’ll create a dedicated
RStudio Project for each lab or exercise that uses data from the r-data folder. This approach
helps manage your files efficiently and ensures that your working directory is correctly set for
each task.

B.2.1 Creating a New RStudio Project for Each Exercise

1. Identify the Lab or Exercise

• Determine which lab or exercise you’re working on (e.g., Lab 2, Exercise 4.1).

2. Create a Directory for the Project

• On your computer, create a new folder with a meaningful name for the lab or
exercise, such as Lab2_Project or Exercise4_1_Project.

3. Copy Necessary Data Files

• From the extracted r-data folder, copy the specific data files needed for the exercise
into your new project folder.

• Alternatively, you can copy the entire r-data folder into your project directory if
multiple datasets are required.

4. Create a New RStudio Project

• Open RStudio.

• Go to File > New Project.

• Choose Existing Directory.

• Browse to the directory you just created for the lab or exercise.

• Select the folder and click Create Project.

5. Organize Your Project Files

• Within your project directory, consider creating subfolders such as data, scripts,
and output to further organize your work.

– Place your data files in the data folder.

– Save your R scripts in the scripts folder.

– Direct any output files (like graphs or reports) to the output folder.

621

6. Working Within the Project

• When you open the RStudio Project, your working directory is automatically set
to the project’s root directory.

• When reading or writing files, use relative paths starting from the project directory
to ensure your code works on any system where the project folder is set as the
working directory.

Example of reading a CSV file from the data folder
data <- read_csv("r-data/your-dataset.csv")

Note

Make sure to use forward slashes / in the file path, even on Windows.

B.2.2 Benefits of Using Separate Projects for Each Exercise

• Organization: Keeps your work for each lab or exercise neatly contained, preventing
files from different tasks from mixing.

• Reproducibility: By maintaining all necessary files within each project, you make it
easier to revisit or share your work without missing dependencies.

• Clarity: Helps you focus on the specific objectives of each exercise without distractions
from other projects.

B.3 Data Usage and Ethics

The datasets and link provided are safe and intended for educational use in conjunction with
this book to help you practice and apply the concepts covered. Please use the data responsibly
and refrain from using it for any unauthorized purposes.

• Privacy: Be mindful that while the datasets are fictional or anonymized, they may
represent sensitive topics. Handle all data with respect and confidentiality.

• Attribution: If you use the datasets in any presentations or projects outside of this
book’s exercises, please acknowledge the source appropriately.

622

B.4 Getting Help

If you encounter any issues downloading or accessing the data:

• Check Your Internet Connection: Ensure you have a stable connection when down-
loading the data.

• Try a Different Browser: Sometimes switching browsers can resolve download issues.

By setting up the data as described, you’ll be ready to dive into the hands-on labs and fully
engage with the practical exercises. Having the data organized and accessible will streamline
your workflow and enhance your learning experience.

Happy analyzing!

623

	Preface
	Your R Journey
	Getting Started with R
	Introduction
	Learning Objectives
	Prerequisites
	Why Learn R Programming?
	A Brief History of R's Development
	Key Reasons to Learn R
	Companies Using R for Analytics
	A Steep Yet Rewarding Learning Curve

	Experiment 1.1: Installing R and RStudio
	Installing R
	Installing RStudio
	Practice Quiz 1.1

	Experiment 1.2: Exploring the RStudio Interface
	The Four Panes of RStudio
	Performing Basic Calculations in R
	Comments in R
	Comparison Operators
	Practice Quiz 1.2
	Exercise 1.2.1: Basic Calculations

	Experiment 1.3: Understanding Atomic Data Types and Variable Assignment
	Atomic Data Types
	Variable Assignment
	Rules for Naming Variables
	Exercise 1.3.1: A Quick Hands-On
	Reflective Exercise 1.3.2: Best Practices and Pitfalls in Variable Naming
	Data Type Conversions
	Practice Quiz 1.3
	Exercise 1.3.3: Variable Assignment and Data Types

	Experiment 1.4: Conditional Statements in R
	The if Statement
	The else Statement
	The else if Statement
	The ifelse() Function
	The switch Function
	Practice Quiz 1.4
	Exercise 1.4.1: Conditional Statements
	Exercise 1.4.2: Menu Selection Using switch()
	Exercise 1.4.3: Mini-Project - Basic Calculator in R

	Further Reading
	Reflective Summary

	Understanding Data Structures
	Introduction
	Learning Objectives
	Prerequisites
	Exploring Data Structures in R
	Experiment 2.1: Vector
	Creating a Vector
	Checking the Type of a Vector
	Length of a Vector
	Advanced Vector Creation
	Vector Operations
	Vector selection
	Reflection Question 2.1.1
	Exercise 2.1.1: Vector Selection
	Factor Vectors
	Reflection Question 2.1.2
	Practice Quiz 2.1
	Exercise 2.1.2: Vector and Factor Manipulation

	Experiment 2.2: Matrices
	Creating Matrices
	Matrices slicing
	Arithmetic Operation in Matrices
	Exercise 2.2.1: Matrix Transpose
	Exercise 2.2.2: Matrix Inverse Multiplication
	Real-World Data Scenario: Sales Data Matrix
	Reflection Question 2.2.1
	Practice Quiz 2.2
	Exercise 2.2.3: Matrix Operations

	Experiment 2.3: Data frame
	Creating a Data Frame
	Exploring Data Frames
	Built-in Datasets
	Subsetting Data Frames
	Practice Quiz 2.3
	Exercise 2.3.1: Subsetting a Dataframe
	Exercise 2.3.2: Data Frame Manipulation

	Experiment 2.4: Lists
	Creating a List
	Accessing List Elements
	Practice Quiz 2.4
	Exercise 2.4.1: Working with Lists

	Experiment 2.5: Arrays
	Creating Arrays
	Reflection

	General Practice Quiz 2
	Reflective Summary

	Writing Custom Function
	Introduction
	Learning Objectives
	Prerequisites
	Experiment 3.1: Understanding Functions in R
	Types of Functions
	Why Write Your Own Function?
	When Should You Write a Function?
	Creating Custom Function
	Example 1: Squaring a Number
	Example 2: Checking for Missing Values

	Experiment 3.2: Advanced Function Examples
	Example 3: Calculating the Statistical Mode
	Example 4: Data Frame Operation Using switch()
	Exercise 3.1.1: Temperature Conversion
	Exercise 3.1.2: Pythagoras Theorem
	Exercise 3.1.3: Staff Data Manipulation Using switch()

	Experiment 3.3: Understanding Variable Scope
	Local vs. Global Variables
	How Variable Scope Works in R
	Variable Shadowing
	Practice Quiz 3.1

	Summary

	Managing Packages and Workflows
	Introduction
	Learning Objectives
	Prerequisites
	Understanding Packages and Libraries in R
	Compiling R Packages from Source
	Experiment 4.1: Installing and Loading Packages
	Installing Packages from CRAN
	Installing Packages from External Repositories
	Loading Packages
	Using Functions from a Package
	Practice Quiz 4.1

	Experiment 4.2: Ensuring Reproducibility with R and RStudio Projects
	Working Directory and Paths
	RStudio Projects
	How RStudio Projects Organize Your Work
	Setting Up Your RStudio Project
	Practice Quiz 4.2

	Experiment 4.3: Importing and Exporting Data in R
	Flat Files
	Spreadsheets
	Labelled Data
	Web Scraping
	Bringing It All Together
	Practice Quiz 4.3
	Exercise 4.3.1: Medical Insurance Data

	Reflective Summary

	Data Analytics
	Data Transformation
	Introduction
	Learning Objectives
	Prerequisites
	What is Data Transformation?
	Real-World Scenario: Preparing Data for Analysis
	Experiment 5.1: The Pipe Operator |>
	Practice Quiz 5.1

	Experiment 5.2: Data Manipulation with dplyr
	Working with the dplyr Verbs
	select() – Picking Specific Columns
	mutate() – Creating or Modifying Columns
	filter() – Selecting Rows Based on Conditions
	arrange() – Reordering Rows
	slice() – Selecting Rows by Position
	summarise() – Aggregating Data
	group_by() – Working with Groups
	Combining All the Verbs:
	Exercise 5.2.1: Top 5 Carnivorous Animals
	Exploring More Functions in dplyr
	Practice Quiz 5.2
	Exercise 5.2.2: Analysing the Penguins Dataset
	Exercise 5.2.3: Data Analyst Candidate Assessment

	Experiment 5.3: Dealing with Missing Data
	Recognising Missing Values
	Summarising Missing Data
	Strategies for Dealing with Missing Data
	Practice Quiz 5.3
	Exercise 5.3.1: Handling Missing Data in the Television Company Dataset

	Reflective Summary

	Tidy Data and Joins
	Introduction
	Learning Objectives
	Prerequisites
	The Principles of Tidy Data
	Experiment 6.1: Reshaping Data with tidyr
	Reshaping Data from Wide to Long Using pivot_longer()
	Reshaping Data from Long to Wide Using pivot_wider()
	Practice Quiz 6.1
	Exercise 6.1.1: Tidying the Pew Religion and Income Survey Data

	Experiment 6.2: Splitting and Combining Columns
	Splitting Columns with separate()
	Combining Columns with unite()
	Practice Quiz 6.2
	Exercise 6.2.1: Transforming the Television Company Dataset

	Experiment 6.3: Combining Datasets with Joins
	The Role of Keys
	Types of Joins
	Joins with Different Key Names
	Practice Quiz 6.3
	Exercise 6.3.1: Relational Analysis with the NYC Flights 2013 Dataset

	Reflective Summary

	Data Visualisation
	Introduction
	Learning Objectives
	What is Data Visualization?
	Importance of Data Visualisation
	Choosing the Right Visualization
	Types of Data Visualisation Analysis
	Common Data Visualization Techniques
	Bar Chart
	Histogram
	Circular charts
	Scatter Plot
	Box and Whisker Plot
	Line Chart
	Areas chart

	Experiment 7.1: Data Visualization with ggplot2
	Understanding the Grammar of Graphics
	Building Plots with ggplot2
	Example Datasets
	Creating a Scatter Plot
	Creating Boxplots
	Creating a Histogram
	Creating Frequency Polygons
	Creating Bar Charts
	Creating a Line Chart
	Creating an Area Chart
	Saving Your Plots
	Practice Quiz 7.1
	Exercise 7.1.1: Data Analysis and Visualization with Medical Insurance Data
	Exercise 7.1.2: Reproducing the Smoking, Gender, and Lifespan Chart

	Experiment 7.2: Data Visualisation Using Base R Graphics
	Advantages of Using Base R
	Core Plotting Functions
	Customising Plots in Base R
	Creating a Scatter Plot with Base R
	Creating Boxplots in Base R
	Creating a Histogram in Base R
	Creating Bar Charts in Base R
	Creating Pie and Doughnut Charts in Base R
	Creating Line and Area Charts
	Saving Plots
	Practice Quiz 7.2

	Reflective Summary

	Statistical Thinking
	Statistical Concept
	Introduction
	Learning Objectives
	What is Data?
	Why is Data Important?
	Types of Data
	Sources of data
	Practice Quiz 8.0

	Experiment 8.1: Statistical Thinking
	Population Data versus Sample Data
	Parameters and Statistics
	Descriptive Statistics
	Practice Quiz 8.1
	Exercise 8.1.2: Professor Francisca - A Generous Giver

	Experiment 8.2: Five Number Summary and Boxplots
	Practice Quiz 8.2
	Exercise 8.2.1

	Experiment 8.3: Scales of Measurement
	Nominal Scale
	Ordinal Scale
	Interval Scale
	Ratio Scale
	Practice Quiz 8.3
	Exercise 8.3.1: Identify the Scale

	Reflective Summary

	Sampling Techniques
	Introduction
	Learning Objectives
	Why Do We Sample?
	Sampling Terminology
	Understanding Probability and Non-Probability Sampling
	Experiment 9.1: Probability Sampling Techniques
	Simple Random Sampling (SRS)
	Exercise 9.1.1: Simple Random Sampling with the Penguins Dataset
	Stratified Sampling
	Exercise 9.1.2: Stratified Sampling with the Diamonds Dataset
	Cluster Sampling
	Exercise 9.1.3: Cluster Sampling with a Simulated Dataset
	Systematic Sampling
	Exercise 9.1.4: Systematic Sampling on a Simple List
	Practice Quiz 9.1: Probability Sampling

	Experiment 9.2: Non-Probability Sampling Techniques
	Convenience Sampling
	Snowball Sampling
	Judgmental (Purposive) Sampling
	Quota Sampling
	Practice Quiz 9.2: Non-Probability Sampling
	Choosing the Right Sampling Technique

	Reproducibility and Ethics

	Data Science Concept
	Introduction
	Learning Objectives
	Prerequisites
	Real-World Scenario: Data Science in Action
	Understanding Data Science
	Data Science Use Cases
	Who is a Data Scientist?
	Skills Required for Data Science
	Becoming a Data Scientist
	Programming Languages for Data Science
	The Data Science Lifecycle
	Import
	Tidy
	Transform
	Visualise
	Models
	Communicate

	Reproducibility and Ethical Considerations
	Practice Quiz 10.1
	Exercise 10.1: Identifying Data Science Roles
	Exercise 10.2: Mapping Lab Skills onto the Data Science Lifecycle
	Exercise 10.3: Designing a Mini Project

	Reflective Summary

	Use Case Projects
	Introduction
	Learning Objectives
	Prerequisites
	Why Use Case Projects?
	Use Case 1: Telco Customer Churn Data Analysis and Visualization Assessment
	Dataset Overview
	Tasks
	Deliverables

	Use Case 1: The Solution
	Data Manipulation and Transformation
	Data Import and Initial Exploration
	Data Cleaning and Transformation
	Recoding Additional Demographic and Payment Variables

	Analysis and Insights
	Summarise Churn Rates by New Variables
	Additional Data Analysis

	Data Visualisation
	Histogram of Customer Tenure
	Bar Chart of Churn Count by Contract Type
	Boxplot: MonthlyCharges across Contract Types
	Scatter Plot: Tenure vs MonthlyCharges coloured by Churn Status
	Line Plot: Churn Rate by Tenure
	Histogram: Tenure Distribution for Fibre Optic Customers

	Telco Customer Churn Analysis Report
	Introduction
	Data Preparation and Transformation
	Exploratory Analysis and Key Findings
	Visual Insights
	Recommendations
	Conclusion

	Exercise 11.1: Analyzing a Rape Survey for the Federal Government of Nigeria
	Project Overview
	The Dataset
	Your Task

	Integrating Lab Skills
	Conclusion and Further Steps
	General Practice Quiz 11
	Reflective Summary

	Appendices
	Solutions
	Lab 1: Getting Started with R
	Solution Quiz 1.1
	Solution Quiz 1.2
	Solution 1.2.1: Basic Calculations
	Solution 1.3.1: A Quick Hands-On
	Solution Quiz 1.3
	Solution 1.3.3: Variable Assignment and Data Types
	Solution Quiz 1.4
	Solution 1.4.1: Conditional Statements
	Solution 1.4.2: Menu Selection Using switch()
	Solution 1.4.3: Mini-Project - Basic Calculator in R

	Lab 2: Understanding Data Structures
	Reflection Solution 2.1.1
	Solution 2.1.1: Vector Selection
	Reflection Solution 2.1.2
	Solution Quiz 2.1
	Solution 2.1.2: Vector and Factor Manipulation
	Solution 2.2.1: Matrix Transpose
	Solution 2.2.2: Matrix Inverse Multiplication
	Solution Quiz 2.2
	Solution 2.3.1: Subsetting a Dataframe
	Solution 2.2.3: Matrix Operations
	Solution Quiz 2.3
	Solution 2.3.2: Data Frame Manipulation
	Solution Quiz 2.4
	Solution 2.4.1: Working with Lists
	General Solution Quiz 2

	Lab 3: Writing Custom Function
	Solution 3.1.1: Temperature Conversion
	Solution 3.1.2: Pythagoras Theorem
	Solution 3.1.3: Staff Data Manipulation Using switch()
	Solution Quiz 3.1

	Lab 4: Managing Packages and Workflows
	Solution Quiz 4.1
	Solution Quiz 4.2
	Solution Quiz 4.3

	Lab 5: Data Transformation
	Solution Quiz 5.1
	Solution Quiz 5.2
	Solution 5.2.1: Top 5 Carnivorous Animals
	Solution Quiz 5.3
	Solution 5.3.1: Missing Data Analysis Report for the Television Company Dataset
	Evaluation and Selection
	Conclusion

	Lab 6: Tidy Data and Joins
	Solution Quiz 6.1
	Solution 6.1.1: Tidying the Pew Religion and Income Survey Data
	Solution Quiz 6.2
	Solution 6.2.1: Transforming the Television Company Dataset
	Solution Quiz 6.3
	Solution 6.3.1: Relational Analysis with the NYC Flights 2013 Dataset

	Lab 7: Data Visualisation
	Solution Quiz 7.1
	Solution Quiz 7.2
	Solution 7.1.2: Reproducing the Smoking, Gender, and Lifespan Chart

	Lab 8: Statistical Concept
	Solution Quiz 8.0
	Solution Quiz 8.1
	Solution- Exercise 8.1.2: Professor Francisca - A Generous Giver
	Solution Quiz 8.2
	Solution- Exercise 8.2.1
	Solution Quiz 8.3
	Solution-Exercise 8.3.1: Identify the Scale

	Lab 9: Sampling Techniques
	Solution 9.1.1: Simple Random Sampling with the Penguins Dataset
	Solution 9.1.2: Stratified Sampling with the Diamonds Dataset
	Solution 9.1.3: Cluster Sampling with a Simulated Dataset
	Solution 9.1.4: Systematic Sampling on a Simple List
	Solution Quiz 9.1: Probability Sampling
	Solution Quiz 9.2: Non-Probability Sampling

	Lab 10: Data Science Concept
	Solution Quiz 10.1

	Lab 11: Use Case Projects
	General Solution Quiz 11

	Downloading and Preparing the Data
	Downloading the Data
	Setting Up Your Working Directory
	Creating a New RStudio Project for Each Exercise
	Benefits of Using Separate Projects for Each Exercise

	Data Usage and Ethics
	Getting Help

